123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- // Boost.Geometry
- // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
- // Copyright (c) 2018 Adam Wulkiewicz, Lodz, Poland.
- // This file was modified by Oracle on 2014, 2016, 2017.
- // Modifications copyright (c) 2014-2017 Oracle and/or its affiliates.
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP
- #define BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/geometry/core/radius.hpp>
- #include <boost/geometry/util/condition.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/formulas/differential_quantities.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/result_inverse.hpp>
- #ifndef BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS
- #define BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS 1000
- #endif
- namespace boost { namespace geometry { namespace formula
- {
- /*!
- \brief The solution of the inverse problem of geodesics on latlong coordinates, after Vincenty, 1975
- \author See
- - http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
- - http://www.icsm.gov.au/gda/gda-v_2.4.pdf
- \author Adapted from various implementations to get it close to the original document
- - http://www.movable-type.co.uk/scripts/LatLongVincenty.html
- - http://exogen.case.edu/projects/geopy/source/geopy.distance.html
- - http://futureboy.homeip.net/fsp/colorize.fsp?fileName=navigation.frink
- */
- template <
- typename CT,
- bool EnableDistance,
- bool EnableAzimuth,
- bool EnableReverseAzimuth = false,
- bool EnableReducedLength = false,
- bool EnableGeodesicScale = false
- >
- struct vincenty_inverse
- {
- static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
- static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
- static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
- static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
- public:
- typedef result_inverse<CT> result_type;
- template <typename T1, typename T2, typename Spheroid>
- static inline result_type apply(T1 const& lon1,
- T1 const& lat1,
- T2 const& lon2,
- T2 const& lat2,
- Spheroid const& spheroid)
- {
- result_type result;
- if (math::equals(lat1, lat2) && math::equals(lon1, lon2))
- {
- return result;
- }
- CT const c0 = 0;
- CT const c1 = 1;
- CT const c2 = 2;
- CT const c3 = 3;
- CT const c4 = 4;
- CT const c16 = 16;
- CT const c_e_12 = CT(1e-12);
- CT const pi = geometry::math::pi<CT>();
- CT const two_pi = c2 * pi;
- // lambda: difference in longitude on an auxiliary sphere
- CT L = lon2 - lon1;
- CT lambda = L;
- if (L < -pi) L += two_pi;
- if (L > pi) L -= two_pi;
- CT const radius_a = CT(get_radius<0>(spheroid));
- CT const radius_b = CT(get_radius<2>(spheroid));
- CT const f = formula::flattening<CT>(spheroid);
- // U: reduced latitude, defined by tan U = (1-f) tan phi
- CT const one_min_f = c1 - f;
- CT const tan_U1 = one_min_f * tan(lat1); // above (1)
- CT const tan_U2 = one_min_f * tan(lat2); // above (1)
- // calculate sin U and cos U using trigonometric identities
- CT const temp_den_U1 = math::sqrt(c1 + math::sqr(tan_U1));
- CT const temp_den_U2 = math::sqrt(c1 + math::sqr(tan_U2));
- // cos = 1 / sqrt(1 + tan^2)
- CT const cos_U1 = c1 / temp_den_U1;
- CT const cos_U2 = c1 / temp_den_U2;
- // sin = tan / sqrt(1 + tan^2)
- // sin = tan * cos
- CT const sin_U1 = tan_U1 * cos_U1;
- CT const sin_U2 = tan_U2 * cos_U2;
- // calculate sin U and cos U directly
- //CT const U1 = atan(tan_U1);
- //CT const U2 = atan(tan_U2);
- //cos_U1 = cos(U1);
- //cos_U2 = cos(U2);
- //sin_U1 = tan_U1 * cos_U1; // sin(U1);
- //sin_U2 = tan_U2 * cos_U2; // sin(U2);
- CT previous_lambda;
- CT sin_lambda;
- CT cos_lambda;
- CT sin_sigma;
- CT sin_alpha;
- CT cos2_alpha;
- CT cos_2sigma_m;
- CT cos2_2sigma_m;
- CT sigma;
- int counter = 0; // robustness
- do
- {
- previous_lambda = lambda; // (13)
- sin_lambda = sin(lambda);
- cos_lambda = cos(lambda);
- sin_sigma = math::sqrt(math::sqr(cos_U2 * sin_lambda) + math::sqr(cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda)); // (14)
- CT cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda; // (15)
- sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma; // (17)
- cos2_alpha = c1 - math::sqr(sin_alpha);
- cos_2sigma_m = math::equals(cos2_alpha, c0) ? c0 : cos_sigma - c2 * sin_U1 * sin_U2 / cos2_alpha; // (18)
- cos2_2sigma_m = math::sqr(cos_2sigma_m);
- CT C = f/c16 * cos2_alpha * (c4 + f * (c4 - c3 * cos2_alpha)); // (10)
- sigma = atan2(sin_sigma, cos_sigma); // (16)
- lambda = L + (c1 - C) * f * sin_alpha *
- (sigma + C * sin_sigma * (cos_2sigma_m + C * cos_sigma * (-c1 + c2 * cos2_2sigma_m))); // (11)
- ++counter; // robustness
- } while ( geometry::math::abs(previous_lambda - lambda) > c_e_12
- && geometry::math::abs(lambda) < pi
- && counter < BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS ); // robustness
-
- if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
- {
- // Some types cannot divide by doubles
- CT const c6 = 6;
- CT const c47 = 47;
- CT const c74 = 74;
- CT const c128 = 128;
- CT const c256 = 256;
- CT const c175 = 175;
- CT const c320 = 320;
- CT const c768 = 768;
- CT const c1024 = 1024;
- CT const c4096 = 4096;
- CT const c16384 = 16384;
- //CT sqr_u = cos2_alpha * (math::sqr(radius_a) - math::sqr(radius_b)) / math::sqr(radius_b); // above (1)
- CT sqr_u = cos2_alpha * ( math::sqr(radius_a / radius_b) - c1 ); // above (1)
- CT A = c1 + sqr_u/c16384 * (c4096 + sqr_u * (-c768 + sqr_u * (c320 - c175 * sqr_u))); // (3)
- CT B = sqr_u/c1024 * (c256 + sqr_u * ( -c128 + sqr_u * (c74 - c47 * sqr_u))); // (4)
- CT const cos_sigma = cos(sigma);
- CT const sin2_sigma = math::sqr(sin_sigma);
- CT delta_sigma = B * sin_sigma * (cos_2sigma_m + (B/c4) * (cos_sigma* (-c1 + c2 * cos2_2sigma_m)
- - (B/c6) * cos_2sigma_m * (-c3 + c4 * sin2_sigma) * (-c3 + c4 * cos2_2sigma_m))); // (6)
- result.distance = radius_b * A * (sigma - delta_sigma); // (19)
- }
-
- if ( BOOST_GEOMETRY_CONDITION(CalcAzimuths) )
- {
- if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
- {
- result.azimuth = atan2(cos_U2 * sin_lambda, cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda); // (20)
- }
- if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
- {
- result.reverse_azimuth = atan2(cos_U1 * sin_lambda, -sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda); // (21)
- }
- }
- if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
- {
- typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
- quantities::apply(lon1, lat1, lon2, lat2,
- result.azimuth, result.reverse_azimuth,
- radius_b, f,
- result.reduced_length, result.geodesic_scale);
- }
- return result;
- }
- };
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP
|