123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- // Boost.Geometry
- // Copyright (c) 2015-2018 Oracle and/or its affiliates.
- // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_THOMAS_INVERSE_HPP
- #define BOOST_GEOMETRY_FORMULAS_THOMAS_INVERSE_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/geometry/core/radius.hpp>
- #include <boost/geometry/util/condition.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/formulas/differential_quantities.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/result_inverse.hpp>
- namespace boost { namespace geometry { namespace formula
- {
- /*!
- \brief The solution of the inverse problem of geodesics on latlong coordinates,
- Forsyth-Andoyer-Lambert type approximation with second order terms.
- \author See
- - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
- http://www.dtic.mil/docs/citations/AD0627893
- - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
- http://www.dtic.mil/docs/citations/AD0703541
- */
- template <
- typename CT,
- bool EnableDistance,
- bool EnableAzimuth,
- bool EnableReverseAzimuth = false,
- bool EnableReducedLength = false,
- bool EnableGeodesicScale = false
- >
- class thomas_inverse
- {
- static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
- static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
- static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
- static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
- public:
- typedef result_inverse<CT> result_type;
- template <typename T1, typename T2, typename Spheroid>
- static inline result_type apply(T1 const& lon1,
- T1 const& lat1,
- T2 const& lon2,
- T2 const& lat2,
- Spheroid const& spheroid)
- {
- result_type result;
- // coordinates in radians
- if ( math::equals(lon1, lon2) && math::equals(lat1, lat2) )
- {
- return result;
- }
- CT const c0 = 0;
- CT const c1 = 1;
- CT const c2 = 2;
- CT const c4 = 4;
- CT const pi_half = math::pi<CT>() / c2;
- CT const f = formula::flattening<CT>(spheroid);
- CT const one_minus_f = c1 - f;
- // CT const tan_theta1 = one_minus_f * tan(lat1);
- // CT const tan_theta2 = one_minus_f * tan(lat2);
- // CT const theta1 = atan(tan_theta1);
- // CT const theta2 = atan(tan_theta2);
- CT const theta1 = math::equals(lat1, pi_half) ? lat1 :
- math::equals(lat1, -pi_half) ? lat1 :
- atan(one_minus_f * tan(lat1));
- CT const theta2 = math::equals(lat2, pi_half) ? lat2 :
- math::equals(lat2, -pi_half) ? lat2 :
- atan(one_minus_f * tan(lat2));
- CT const theta_m = (theta1 + theta2) / c2;
- CT const d_theta_m = (theta2 - theta1) / c2;
- CT const d_lambda = lon2 - lon1;
- CT const d_lambda_m = d_lambda / c2;
- CT const sin_theta_m = sin(theta_m);
- CT const cos_theta_m = cos(theta_m);
- CT const sin_d_theta_m = sin(d_theta_m);
- CT const cos_d_theta_m = cos(d_theta_m);
- CT const sin2_theta_m = math::sqr(sin_theta_m);
- CT const cos2_theta_m = math::sqr(cos_theta_m);
- CT const sin2_d_theta_m = math::sqr(sin_d_theta_m);
- CT const cos2_d_theta_m = math::sqr(cos_d_theta_m);
- CT const sin_d_lambda_m = sin(d_lambda_m);
- CT const sin2_d_lambda_m = math::sqr(sin_d_lambda_m);
- CT const H = cos2_theta_m - sin2_d_theta_m;
- CT const L = sin2_d_theta_m + H * sin2_d_lambda_m;
- CT const cos_d = c1 - c2 * L;
- CT const d = acos(cos_d);
- CT const sin_d = sin(d);
- CT const one_minus_L = c1 - L;
- if ( math::equals(sin_d, c0)
- || math::equals(L, c0)
- || math::equals(one_minus_L, c0) )
- {
- return result;
- }
- CT const U = c2 * sin2_theta_m * cos2_d_theta_m / one_minus_L;
- CT const V = c2 * sin2_d_theta_m * cos2_theta_m / L;
- CT const X = U + V;
- CT const Y = U - V;
- CT const T = d / sin_d;
- CT const D = c4 * math::sqr(T);
- CT const E = c2 * cos_d;
- CT const A = D * E;
- CT const B = c2 * D;
- CT const C = T - (A - E) / c2;
- CT const f_sqr = math::sqr(f);
- CT const f_sqr_per_64 = f_sqr / CT(64);
-
- if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
- {
- CT const n1 = X * (A + C*X);
- CT const n2 = Y * (B + E*Y);
- CT const n3 = D*X*Y;
- CT const delta1d = f * (T*X-Y) / c4;
- CT const delta2d = f_sqr_per_64 * (n1 - n2 + n3);
- CT const a = get_radius<0>(spheroid);
- //result.distance = a * sin_d * (T - delta1d);
- result.distance = a * sin_d * (T - delta1d + delta2d);
- }
-
- if ( BOOST_GEOMETRY_CONDITION(CalcAzimuths) )
- {
- // NOTE: if both cos_latX == 0 then below we'd have 0 * INF
- // it's a situation when the endpoints are on the poles +-90 deg
- // in this case the azimuth could either be 0 or +-pi
- // but above always 0 is returned
- CT const F = c2*Y-E*(c4-X);
- CT const M = CT(32)*T-(CT(20)*T-A)*X-(B+c4)*Y;
- CT const G = f*T/c2 + f_sqr_per_64 * M;
-
- // TODO:
- // If d_lambda is close to 90 or -90 deg then tan(d_lambda) is big
- // and F is small. The result is not accurate.
- // In the edge case the result may be 2 orders of magnitude less
- // accurate than Andoyer's.
- CT const tan_d_lambda = tan(d_lambda);
- CT const Q = -(F*G*tan_d_lambda) / c4;
- CT const d_lambda_m_p = (d_lambda + Q) / c2;
- CT const tan_d_lambda_m_p = tan(d_lambda_m_p);
- CT const v = atan2(cos_d_theta_m, sin_theta_m * tan_d_lambda_m_p);
- CT const u = atan2(-sin_d_theta_m, cos_theta_m * tan_d_lambda_m_p);
- CT const pi = math::pi<CT>();
- if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
- {
- CT alpha1 = v + u;
- if (alpha1 > pi)
- {
- alpha1 -= c2 * pi;
- }
- result.azimuth = alpha1;
- }
- if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
- {
- CT alpha2 = pi - (v - u);
- if (alpha2 > pi)
- {
- alpha2 -= c2 * pi;
- }
- result.reverse_azimuth = alpha2;
- }
- }
- if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
- {
- typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
- quantities::apply(lon1, lat1, lon2, lat2,
- result.azimuth, result.reverse_azimuth,
- get_radius<2>(spheroid), f,
- result.reduced_length, result.geodesic_scale);
- }
- return result;
- }
- };
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_THOMAS_INVERSE_HPP
|