123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- // Boost.Geometry
- // Copyright (c) 2016-2020 Oracle and/or its affiliates.
- // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_THOMAS_DIRECT_HPP
- #define BOOST_GEOMETRY_FORMULAS_THOMAS_DIRECT_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/geometry/core/assert.hpp>
- #include <boost/geometry/core/radius.hpp>
- #include <boost/geometry/util/condition.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
- #include <boost/geometry/formulas/differential_quantities.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/result_direct.hpp>
- namespace boost { namespace geometry { namespace formula
- {
- /*!
- \brief The solution of the direct problem of geodesics on latlong coordinates,
- Forsyth-Andoyer-Lambert type approximation with first/second order terms.
- \author See
- - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
- http://www.dtic.mil/docs/citations/AD0627893
- - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
- http://www.dtic.mil/docs/citations/AD0703541
- */
- template <
- typename CT,
- bool SecondOrder = true,
- bool EnableCoordinates = true,
- bool EnableReverseAzimuth = false,
- bool EnableReducedLength = false,
- bool EnableGeodesicScale = false
- >
- class thomas_direct
- {
- static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
- static const bool CalcCoordinates = EnableCoordinates || CalcQuantities;
- static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcCoordinates || CalcQuantities;
- public:
- typedef result_direct<CT> result_type;
- template <typename T, typename Dist, typename Azi, typename Spheroid>
- static inline result_type apply(T const& lo1,
- T const& la1,
- Dist const& distance,
- Azi const& azimuth12,
- Spheroid const& spheroid)
- {
- result_type result;
- CT const lon1 = lo1;
- CT const lat1 = la1;
- CT const c0 = 0;
- CT const c1 = 1;
- CT const c2 = 2;
- CT const c4 = 4;
- CT const a = CT(get_radius<0>(spheroid));
- CT const b = CT(get_radius<2>(spheroid));
- CT const f = formula::flattening<CT>(spheroid);
- CT const one_minus_f = c1 - f;
- CT const pi = math::pi<CT>();
- CT const pi_half = pi / c2;
- BOOST_GEOMETRY_ASSERT(-pi <= azimuth12 && azimuth12 <= pi);
- // keep azimuth small - experiments show low accuracy
- // if the azimuth is closer to (+-)180 deg.
- CT azi12_alt = azimuth12;
- CT lat1_alt = lat1;
- bool alter_result = vflip_if_south(lat1, azimuth12, lat1_alt, azi12_alt);
- CT const theta1 = math::equals(lat1_alt, pi_half) ? lat1_alt :
- math::equals(lat1_alt, -pi_half) ? lat1_alt :
- atan(one_minus_f * tan(lat1_alt));
- CT const sin_theta1 = sin(theta1);
- CT const cos_theta1 = cos(theta1);
- CT const sin_a12 = sin(azi12_alt);
- CT const cos_a12 = cos(azi12_alt);
- CT const M = cos_theta1 * sin_a12; // cos_theta0
- CT const theta0 = acos(M);
- CT const sin_theta0 = sin(theta0);
- CT const N = cos_theta1 * cos_a12;
- CT const C1 = f * M; // lower-case c1 in the technical report
- CT const C2 = f * (c1 - math::sqr(M)) / c4; // lower-case c2 in the technical report
- CT D = 0;
- CT P = 0;
- if ( BOOST_GEOMETRY_CONDITION(SecondOrder) )
- {
- D = (c1 - C2) * (c1 - C2 - C1 * M);
- P = C2 * (c1 + C1 * M / c2) / D;
- }
- else
- {
- D = c1 - c2 * C2 - C1 * M;
- P = C2 / D;
- }
- // special case for equator:
- // sin_theta0 = 0 <=> lat1 = 0 ^ |azimuth12| = pi/2
- // NOTE: in this case it doesn't matter what's the value of cos_sigma1 because
- // theta1=0, theta0=0, M=1|-1, C2=0 so X=0 and Y=0 so d_sigma=d
- // cos_a12=0 so N=0, therefore
- // lat2=0, azi21=pi/2|-pi/2
- // d_eta = atan2(sin_d_sigma, cos_d_sigma)
- // H = C1 * d_sigma
- CT const cos_sigma1 = math::equals(sin_theta0, c0)
- ? c1
- : normalized1_1(sin_theta1 / sin_theta0);
- CT const sigma1 = acos(cos_sigma1);
- CT const d = distance / (a * D);
- CT const u = 2 * (sigma1 - d);
- CT const cos_d = cos(d);
- CT const sin_d = sin(d);
- CT const cos_u = cos(u);
- CT const sin_u = sin(u);
- CT const W = c1 - c2 * P * cos_u;
- CT const V = cos_u * cos_d - sin_u * sin_d;
- CT const Y = c2 * P * V * W * sin_d;
- CT X = 0;
- CT d_sigma = d - Y;
- if ( BOOST_GEOMETRY_CONDITION(SecondOrder) )
- {
- X = math::sqr(C2) * sin_d * cos_d * (2 * math::sqr(V) - c1);
- d_sigma += X;
- }
- CT const sin_d_sigma = sin(d_sigma);
- CT const cos_d_sigma = cos(d_sigma);
- if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
- {
- result.reverse_azimuth = atan2(M, N * cos_d_sigma - sin_theta1 * sin_d_sigma);
- if (alter_result)
- {
- vflip_rev_azi(result.reverse_azimuth, azimuth12);
- }
- }
- if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
- {
- CT const S_sigma = c2 * sigma1 - d_sigma;
- CT cos_S_sigma = 0;
- CT H = C1 * d_sigma;
- if ( BOOST_GEOMETRY_CONDITION(SecondOrder) )
- {
- cos_S_sigma = cos(S_sigma);
- H = H * (c1 - C2) - C1 * C2 * sin_d_sigma * cos_S_sigma;
- }
- CT const d_eta = atan2(sin_d_sigma * sin_a12, cos_theta1 * cos_d_sigma - sin_theta1 * sin_d_sigma * cos_a12);
- CT const d_lambda = d_eta - H;
- result.lon2 = lon1 + d_lambda;
- if (! math::equals(M, c0))
- {
- CT const sin_a21 = sin(result.reverse_azimuth);
- CT const tan_theta2 = (sin_theta1 * cos_d_sigma + N * sin_d_sigma) * sin_a21 / M;
- result.lat2 = atan(tan_theta2 / one_minus_f);
- }
- else
- {
- CT const sigma2 = S_sigma - sigma1;
- //theta2 = asin(cos(sigma2)) <=> sin_theta0 = 1
- // NOTE: cos(sigma2) defines the sign of tan_theta2
- CT const tan_theta2 = cos(sigma2) / math::abs(sin(sigma2));
- result.lat2 = atan(tan_theta2 / one_minus_f);
- }
- if (alter_result)
- {
- result.lat2 = -result.lat2;
- }
- }
- if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
- {
- typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
- quantities::apply(lon1, lat1, result.lon2, result.lat2,
- azimuth12, result.reverse_azimuth,
- b, f,
- result.reduced_length, result.geodesic_scale);
- }
- if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
- {
- // For longitudes close to the antimeridian the result can be out
- // of range. Therefore normalize.
- // It has to be done at the end because otherwise differential
- // quantities are calculated incorrectly.
- math::detail::normalize_angle_cond<radian>(result.lon2);
- }
- return result;
- }
- private:
- static inline bool vflip_if_south(CT const& lat1, CT const& azi12, CT & lat1_alt, CT & azi12_alt)
- {
- CT const c2 = 2;
- CT const pi = math::pi<CT>();
- CT const pi_half = pi / c2;
- if (azi12 > pi_half)
- {
- azi12_alt = pi - azi12;
- lat1_alt = -lat1;
- return true;
- }
- else if (azi12 < -pi_half)
- {
- azi12_alt = -pi - azi12;
- lat1_alt = -lat1;
- return true;
- }
- return false;
- }
- static inline void vflip_rev_azi(CT & rev_azi, CT const& azimuth12)
- {
- CT const c0 = 0;
- CT const pi = math::pi<CT>();
- if (rev_azi == c0)
- {
- rev_azi = azimuth12 >= 0 ? pi : -pi;
- }
- else if (rev_azi > c0)
- {
- rev_azi = pi - rev_azi;
- }
- else
- {
- rev_azi = -pi - rev_azi;
- }
- }
- static inline CT normalized1_1(CT const& value)
- {
- CT const c1 = 1;
- return value > c1 ? c1 :
- value < -c1 ? -c1 :
- value;
- }
- };
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_THOMAS_DIRECT_HPP
|