123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- // Boost.Geometry
- // Copyright (c) 2017-2018 Oracle and/or its affiliates.
- // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP
- #define BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/geometry/core/radius.hpp>
- #include <boost/geometry/util/condition.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/meridian_segment.hpp>
- namespace boost { namespace geometry { namespace formula
- {
- /*!
- \brief Compute the arc length of an ellipse.
- */
- template <typename CT, unsigned int Order = 1>
- class meridian_inverse
- {
- public :
- struct result
- {
- result()
- : distance(0)
- , meridian(false)
- {}
- CT distance;
- bool meridian;
- };
- template <typename T>
- static bool meridian_not_crossing_pole(T lat1, T lat2, CT diff)
- {
- CT half_pi = math::pi<CT>()/CT(2);
- return math::equals(diff, CT(0)) ||
- (math::equals(lat2, half_pi) && math::equals(lat1, -half_pi));
- }
- static bool meridian_crossing_pole(CT diff)
- {
- return math::equals(math::abs(diff), math::pi<CT>());
- }
- template <typename T, typename Spheroid>
- static CT meridian_not_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid)
- {
- return math::abs(apply(lat2, spheroid) - apply(lat1, spheroid));
- }
- template <typename T, typename Spheroid>
- static CT meridian_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid)
- {
- CT c0 = 0;
- CT half_pi = math::pi<CT>()/CT(2);
- CT lat_sign = 1;
- if (lat1+lat2 < c0)
- {
- lat_sign = CT(-1);
- }
- return math::abs(lat_sign * CT(2) * apply(half_pi, spheroid)
- - apply(lat1, spheroid) - apply(lat2, spheroid));
- }
- template <typename T, typename Spheroid>
- static result apply(T lon1, T lat1, T lon2, T lat2, Spheroid const& spheroid)
- {
- result res;
- CT diff = geometry::math::longitude_distance_signed<geometry::radian>(lon1, lon2);
- if (lat1 > lat2)
- {
- std::swap(lat1, lat2);
- }
- if ( meridian_not_crossing_pole(lat1, lat2, diff) )
- {
- res.distance = meridian_not_crossing_pole_dist(lat1, lat2, spheroid);
- res.meridian = true;
- }
- else if ( meridian_crossing_pole(diff) )
- {
- res.distance = meridian_crossing_pole_dist(lat1, lat2, spheroid);
- res.meridian = true;
- }
- return res;
- }
- // Distance computation on meridians using series approximations
- // to elliptic integrals. Formula to compute distance from lattitude 0 to lat
- // https://en.wikipedia.org/wiki/Meridian_arc
- // latitudes are assumed to be in radians and in [-pi/2,pi/2]
- template <typename T, typename Spheroid>
- static CT apply(T lat, Spheroid const& spheroid)
- {
- CT const a = get_radius<0>(spheroid);
- CT const f = formula::flattening<CT>(spheroid);
- CT n = f / (CT(2) - f);
- CT M = a/(1+n);
- CT C0 = 1;
- if (Order == 0)
- {
- return M * C0 * lat;
- }
- CT C2 = -1.5 * n;
- if (Order == 1)
- {
- return M * (C0 * lat + C2 * sin(2*lat));
- }
- CT n2 = n * n;
- C0 += .25 * n2;
- CT C4 = 0.9375 * n2;
- if (Order == 2)
- {
- return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat));
- }
- CT n3 = n2 * n;
- C2 += 0.1875 * n3;
- CT C6 = -0.729166667 * n3;
- if (Order == 3)
- {
- return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
- + C6 * sin(6*lat));
- }
- CT n4 = n2 * n2;
- C4 -= 0.234375 * n4;
- CT C8 = 0.615234375 * n4;
- if (Order == 4)
- {
- return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
- + C6 * sin(6*lat) + C8 * sin(8*lat));
- }
- CT n5 = n4 * n;
- C6 += 0.227864583 * n5;
- CT C10 = -0.54140625 * n5;
- // Order 5 or higher
- return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
- + C6 * sin(6*lat) + C8 * sin(8*lat) + C10 * sin(10*lat));
- }
- };
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP
|