123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986 |
- // Boost.Geometry
- // Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan.
- // Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program.
- // This file was modified by Oracle on 2019-2021.
- // Modifications copyright (c) 2019-2021 Oracle and/or its affiliates.
- // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // This file is converted from GeographicLib, https://geographiclib.sourceforge.io
- // GeographicLib is originally written by Charles Karney.
- // Author: Charles Karney (2008-2017)
- // Last updated version of GeographicLib: 1.49
- // Original copyright notice:
- // Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
- // under the MIT/X11 License. For more information, see
- // https://geographiclib.sourceforge.io
- #ifndef BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
- #define BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/special_functions/hypot.hpp>
- #include <boost/geometry/util/condition.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/util/series_expansion.hpp>
- #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/result_inverse.hpp>
- namespace boost { namespace geometry { namespace math {
- /*!
- \brief The exact difference of two angles reduced to (-180deg, 180deg].
- */
- template<typename T>
- inline T difference_angle(T const& x, T const& y, T& e)
- {
- T t, d = math::sum_error(std::remainder(-x, T(360)), std::remainder(y, T(360)), t);
- normalize_azimuth<degree, T>(d);
- // Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
- // abs(t) <= eps (eps = 2^-45 for doubles). The only case where the
- // addition of t takes the result outside the range (-180,180] is d = 180
- // and t > 0. The case, d = -180 + eps, t = -eps, can't happen, since
- // sum_error would have returned the exact result in such a case (i.e., given t = 0).
- return math::sum_error(d == 180 && t > 0 ? -180 : d, t, e);
- }
- }}} // namespace boost::geometry::math
- namespace boost { namespace geometry { namespace formula
- {
- namespace se = series_expansion;
- namespace detail
- {
- template <
- typename CT,
- bool EnableDistance,
- bool EnableAzimuth,
- bool EnableReverseAzimuth = false,
- bool EnableReducedLength = false,
- bool EnableGeodesicScale = false,
- size_t SeriesOrder = 8
- >
- class karney_inverse
- {
- static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
- static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
- static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
- static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
- public:
- typedef result_inverse<CT> result_type;
- template <typename T1, typename T2, typename Spheroid>
- static inline result_type apply(T1 const& lo1,
- T1 const& la1,
- T2 const& lo2,
- T2 const& la2,
- Spheroid const& spheroid)
- {
- static CT const c0 = 0;
- static CT const c0_001 = 0.001;
- static CT const c0_1 = 0.1;
- static CT const c1 = 1;
- static CT const c2 = 2;
- static CT const c3 = 3;
- static CT const c8 = 8;
- static CT const c16 = 16;
- static CT const c90 = 90;
- static CT const c180 = 180;
- static CT const c200 = 200;
- static CT const pi = math::pi<CT>();
- static CT const d2r = math::d2r<CT>();
- static CT const r2d = math::r2d<CT>();
- result_type result;
- CT lat1 = la1 * r2d;
- CT lat2 = la2 * r2d;
- CT lon1 = lo1 * r2d;
- CT lon2 = lo2 * r2d;
- CT const a = CT(get_radius<0>(spheroid));
- CT const b = CT(get_radius<2>(spheroid));
- CT const f = formula::flattening<CT>(spheroid);
- CT const one_minus_f = c1 - f;
- CT const two_minus_f = c2 - f;
- CT const tol0 = std::numeric_limits<CT>::epsilon();
- CT const tol1 = c200 * tol0;
- CT const tol2 = sqrt(tol0);
- // Check on bisection interval.
- CT const tol_bisection = tol0 * tol2;
- CT const etol2 = c0_1 * tol2 /
- sqrt((std::max)(c0_001, std::abs(f)) * (std::min)(c1, c1 - f / c2) / c2);
- CT tiny = std::sqrt((std::numeric_limits<CT>::min)());
- CT const n = f / two_minus_f;
- CT const e2 = f * two_minus_f;
- CT const ep2 = e2 / math::sqr(one_minus_f);
- // Compute the longitudinal difference.
- CT lon12_error;
- CT lon12 = math::difference_angle(lon1, lon2, lon12_error);
- int lon12_sign = lon12 >= 0 ? 1 : -1;
- // Make points close to the meridian to lie on it.
- lon12 = lon12_sign * lon12;
- lon12_error = (c180 - lon12) - lon12_sign * lon12_error;
- // Convert to radians.
- CT lam12 = lon12 * d2r;
- CT sin_lam12;
- CT cos_lam12;
- if (lon12 > c90)
- {
- math::sin_cos_degrees(lon12_error, sin_lam12, cos_lam12);
- cos_lam12 *= -c1;
- }
- else
- {
- math::sin_cos_degrees(lon12, sin_lam12, cos_lam12);
- }
- // Make points close to the equator to lie on it.
- lat1 = math::round_angle(std::abs(lat1) > c90 ? c90 : lat1);
- lat2 = math::round_angle(std::abs(lat2) > c90 ? c90 : lat2);
- // Arrange points in a canonical form, as explained in
- // paper, Algorithms for geodesics, Eq. (44):
- //
- // 0 <= lon12 <= 180
- // -90 <= lat1 <= 0
- // lat1 <= lat2 <= -lat1
- int swap_point = std::abs(lat1) < std::abs(lat2) ? -1 : 1;
- if (swap_point < 0)
- {
- lon12_sign *= -1;
- swap(lat1, lat2);
- }
- // Enforce lat1 to be <= 0.
- int lat_sign = lat1 < 0 ? 1 : -1;
- lat1 *= lat_sign;
- lat2 *= lat_sign;
- CT sin_beta1, cos_beta1;
- math::sin_cos_degrees(lat1, sin_beta1, cos_beta1);
- sin_beta1 *= one_minus_f;
- math::normalize_unit_vector<CT>(sin_beta1, cos_beta1);
- cos_beta1 = (std::max)(tiny, cos_beta1);
- CT sin_beta2, cos_beta2;
- math::sin_cos_degrees(lat2, sin_beta2, cos_beta2);
- sin_beta2 *= one_minus_f;
- math::normalize_unit_vector<CT>(sin_beta2, cos_beta2);
- cos_beta2 = (std::max)(tiny, cos_beta2);
- // If cos_beta1 < -sin_beta1, then cos_beta2 - cos_beta1 is a
- // sensitive measure of the |beta1| - |beta2|. Alternatively,
- // (cos_beta1 >= -sin_beta1), abs(sin_beta2) + sin_beta1 is
- // a better measure.
- // Sometimes these quantities vanish and in that case we
- // force beta2 = +/- bet1a exactly.
- if (cos_beta1 < -sin_beta1)
- {
- if (cos_beta1 == cos_beta2)
- {
- sin_beta2 = sin_beta2 < 0 ? sin_beta1 : -sin_beta1;
- }
- }
- else
- {
- if (std::abs(sin_beta2) == -sin_beta1)
- {
- cos_beta2 = cos_beta1;
- }
- }
- CT const dn1 = sqrt(c1 + ep2 * math::sqr(sin_beta1));
- CT const dn2 = sqrt(c1 + ep2 * math::sqr(sin_beta2));
- CT sigma12;
- CT m12x = c0;
- CT s12x;
- CT M21;
- // Index zero element of coeffs_C1 is unused.
- se::coeffs_C1<SeriesOrder, CT> const coeffs_C1(n);
- bool meridian = lat1 == -90 || sin_lam12 == 0;
- CT cos_alpha1, sin_alpha1;
- CT cos_alpha2, sin_alpha2;
- if (meridian)
- {
- // Endpoints lie on a single full meridian.
- // Point to the target latitude.
- cos_alpha1 = cos_lam12;
- sin_alpha1 = sin_lam12;
- // Heading north at the target.
- cos_alpha2 = c1;
- sin_alpha2 = c0;
- CT sin_sigma1 = sin_beta1;
- CT cos_sigma1 = cos_alpha1 * cos_beta1;
- CT sin_sigma2 = sin_beta2;
- CT cos_sigma2 = cos_alpha2 * cos_beta2;
- CT sigma12 = std::atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2),
- cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2);
- CT dummy;
- meridian_length(n, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
- sin_sigma2, cos_sigma2, dn2,
- cos_beta1, cos_beta2, s12x,
- m12x, dummy, result.geodesic_scale,
- M21, coeffs_C1);
- if (sigma12 < c1 || m12x >= c0)
- {
- if (sigma12 < c3 * tiny)
- {
- sigma12 = m12x = s12x = c0;
- }
- m12x *= b;
- s12x *= b;
- }
- else
- {
- // m12 < 0, i.e., prolate and too close to anti-podal.
- meridian = false;
- }
- }
- CT omega12;
- if (!meridian && sin_beta1 == c0 &&
- (f <= c0 || lon12_error >= f * c180))
- {
- // Points lie on the equator.
- cos_alpha1 = cos_alpha2 = c0;
- sin_alpha1 = sin_alpha2 = c1;
- s12x = a * lam12;
- sigma12 = omega12 = lam12 / one_minus_f;
- m12x = b * sin(sigma12);
- if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
- {
- result.geodesic_scale = cos(sigma12);
- }
- }
- else if (!meridian)
- {
- // If point1 and point2 belong within a hemisphere bounded by a
- // meridian and geodesic is neither meridional nor equatorial.
- // Find the starting point for Newton's method.
- CT dnm = c1;
- sigma12 = newton_start(sin_beta1, cos_beta1, dn1,
- sin_beta2, cos_beta2, dn2,
- lam12, sin_lam12, cos_lam12,
- sin_alpha1, cos_alpha1,
- sin_alpha2, cos_alpha2,
- dnm, coeffs_C1, ep2,
- tol1, tol2, etol2,
- n, f);
- if (sigma12 >= c0)
- {
- // Short lines case (newton_start sets sin_alpha2, cos_alpha2, dnm).
- s12x = sigma12 * b * dnm;
- m12x = math::sqr(dnm) * b * sin(sigma12 / dnm);
- if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
- {
- result.geodesic_scale = cos(sigma12 / dnm);
- }
- // Convert to radians.
- omega12 = lam12 / (one_minus_f * dnm);
- }
- else
- {
- // Apply the Newton's method.
- CT sin_sigma1 = c0, cos_sigma1 = c0;
- CT sin_sigma2 = c0, cos_sigma2 = c0;
- CT eps = c0, diff_omega12 = c0;
- // Bracketing range.
- CT sin_alpha1a = tiny, cos_alpha1a = c1;
- CT sin_alpha1b = tiny, cos_alpha1b = -c1;
- size_t iteration = 0;
- size_t max_iterations = 20 + std::numeric_limits<size_t>::digits + 10;
- for (bool tripn = false, tripb = false;
- iteration < max_iterations;
- ++iteration)
- {
- CT dv = c0;
- CT v = lambda12(sin_beta1, cos_beta1, dn1,
- sin_beta2, cos_beta2, dn2,
- sin_alpha1, cos_alpha1,
- sin_lam12, cos_lam12,
- sin_alpha2, cos_alpha2,
- sigma12,
- sin_sigma1, cos_sigma1,
- sin_sigma2, cos_sigma2,
- eps, diff_omega12,
- iteration < max_iterations,
- dv, f, n, ep2, tiny, coeffs_C1);
- // Reversed test to allow escape with NaNs.
- if (tripb || !(std::abs(v) >= (tripn ? c8 : c1) * tol0))
- break;
- // Update bracketing values.
- if (v > c0 && (iteration > max_iterations ||
- cos_alpha1 / sin_alpha1 > cos_alpha1b / sin_alpha1b))
- {
- sin_alpha1b = sin_alpha1;
- cos_alpha1b = cos_alpha1;
- }
- else if (v < c0 && (iteration > max_iterations ||
- cos_alpha1 / sin_alpha1 < cos_alpha1a / sin_alpha1a))
- {
- sin_alpha1a = sin_alpha1;
- cos_alpha1a = cos_alpha1;
- }
- if (iteration < max_iterations && dv > c0)
- {
- CT diff_alpha1 = -v / dv;
- CT sin_diff_alpha1 = sin(diff_alpha1);
- CT cos_diff_alpha1 = cos(diff_alpha1);
- CT nsin_alpha1 = sin_alpha1 * cos_diff_alpha1 +
- cos_alpha1 * sin_diff_alpha1;
- if (nsin_alpha1 > c0 && std::abs(diff_alpha1) < pi)
- {
- cos_alpha1 = cos_alpha1 * cos_diff_alpha1 - sin_alpha1 * sin_diff_alpha1;
- sin_alpha1 = nsin_alpha1;
- math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
- // In some regimes we don't get quadratic convergence because
- // slope -> 0. So use convergence conditions based on epsilon
- // instead of sqrt(epsilon).
- tripn = std::abs(v) <= c16 * tol0;
- continue;
- }
- }
- // Either dv was not positive or updated value was outside legal
- // range. Use the midpoint of the bracket as the next estimate.
- // This mechanism is not needed for the WGS84 ellipsoid, but it does
- // catch problems with more eeccentric ellipsoids. Its efficacy is
- // such for the WGS84 test set with the starting guess set to alp1 =
- // 90deg:
- // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
- // WGS84 and random input: mean = 4.74, sd = 0.99
- sin_alpha1 = (sin_alpha1a + sin_alpha1b) / c2;
- cos_alpha1 = (cos_alpha1a + cos_alpha1b) / c2;
- math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
- tripn = false;
- tripb = (std::abs(sin_alpha1a - sin_alpha1) + (cos_alpha1a - cos_alpha1) < tol_bisection ||
- std::abs(sin_alpha1 - sin_alpha1b) + (cos_alpha1 - cos_alpha1b) < tol_bisection);
- }
- CT dummy;
- se::coeffs_C1<SeriesOrder, CT> const coeffs_C1_eps(eps);
- // Ensure that the reduced length and geodesic scale are computed in
- // a "canonical" way, with the I2 integral.
- meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
- sin_sigma2, cos_sigma2, dn2,
- cos_beta1, cos_beta2, s12x,
- m12x, dummy, result.geodesic_scale,
- M21, coeffs_C1_eps);
- m12x *= b;
- s12x *= b;
- }
- }
- if (swap_point < 0)
- {
- swap(sin_alpha1, sin_alpha2);
- swap(cos_alpha1, cos_alpha2);
- swap(result.geodesic_scale, M21);
- }
- sin_alpha1 *= swap_point * lon12_sign;
- cos_alpha1 *= swap_point * lat_sign;
- sin_alpha2 *= swap_point * lon12_sign;
- cos_alpha2 *= swap_point * lat_sign;
- if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
- {
- result.reduced_length = m12x;
- }
- if (BOOST_GEOMETRY_CONDITION(CalcAzimuths))
- {
- if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
- {
- result.azimuth = atan2(sin_alpha1, cos_alpha1);
- }
- if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
- {
- result.reverse_azimuth = atan2(sin_alpha2, cos_alpha2);
- }
- }
- if (BOOST_GEOMETRY_CONDITION(EnableDistance))
- {
- result.distance = s12x;
- }
- return result;
- }
- template <typename CoeffsC1>
- static inline void meridian_length(CT const& epsilon, CT const& ep2, CT const& sigma12,
- CT const& sin_sigma1, CT const& cos_sigma1, CT const& dn1,
- CT const& sin_sigma2, CT const& cos_sigma2, CT const& dn2,
- CT const& cos_beta1, CT const& cos_beta2,
- CT& s12x, CT& m12x, CT& m0,
- CT& M12, CT& M21,
- CoeffsC1 const& coeffs_C1)
- {
- static CT const c1 = 1;
- CT A12x = 0, J12 = 0;
- CT expansion_A1, expansion_A2;
- // Evaluate the coefficients for C2.
- se::coeffs_C2<SeriesOrder, CT> coeffs_C2(epsilon);
- if (BOOST_GEOMETRY_CONDITION(EnableDistance) ||
- BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
- BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
- {
- // Find the coefficients for A1 by computing the
- // series expansion using Horner scehme.
- expansion_A1 = se::evaluate_A1<SeriesOrder>(epsilon);
- if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
- BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
- {
- // Find the coefficients for A2 by computing the
- // series expansion using Horner scehme.
- expansion_A2 = se::evaluate_A2<SeriesOrder>(epsilon);
- A12x = expansion_A1 - expansion_A2;
- expansion_A2 += c1;
- }
- expansion_A1 += c1;
- }
- if (BOOST_GEOMETRY_CONDITION(EnableDistance))
- {
- CT B1 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C1)
- - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C1);
- s12x = expansion_A1 * (sigma12 + B1);
- if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
- BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
- {
- CT B2 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2)
- - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2);
- J12 = A12x * sigma12 + (expansion_A1 * B1 - expansion_A2 * B2);
- }
- }
- else if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
- BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
- {
- for (size_t i = 1; i <= SeriesOrder; ++i)
- {
- coeffs_C2[i] = expansion_A1 * coeffs_C1[i] -
- expansion_A2 * coeffs_C2[i];
- }
- J12 = A12x * sigma12 +
- (se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2)
- - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2));
- }
- if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
- {
- m0 = A12x;
- m12x = dn2 * (cos_sigma1 * sin_sigma2) -
- dn1 * (sin_sigma1 * cos_sigma2) -
- cos_sigma1 * cos_sigma2 * J12;
- }
- if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
- {
- CT cos_sigma12 = cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2;
- CT t = ep2 * (cos_beta1 - cos_beta2) *
- (cos_beta1 + cos_beta2) / (dn1 + dn2);
- M12 = cos_sigma12 + (t * sin_sigma2 - cos_sigma2 * J12) * sin_sigma1 / dn1;
- M21 = cos_sigma12 - (t * sin_sigma1 - cos_sigma1 * J12) * sin_sigma2 / dn2;
- }
- }
- /*
- Return a starting point for Newton's method in sin_alpha1 and
- cos_alpha1 (function value is -1). If Newton's method
- doesn't need to be used, return also sin_alpha2 and
- cos_alpha2 and function value is sig12.
- */
- template <typename CoeffsC1>
- static inline CT newton_start(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1,
- CT const& sin_beta2, CT const& cos_beta2, CT dn2,
- CT const& lam12, CT const& sin_lam12, CT const& cos_lam12,
- CT& sin_alpha1, CT& cos_alpha1,
- CT& sin_alpha2, CT& cos_alpha2,
- CT& dnm, CoeffsC1 const& coeffs_C1, CT const& ep2,
- CT const& tol1, CT const& tol2, CT const& etol2, CT const& n,
- CT const& f)
- {
- static CT const c0 = 0;
- static CT const c0_01 = 0.01;
- static CT const c0_1 = 0.1;
- static CT const c0_5 = 0.5;
- static CT const c1 = 1;
- static CT const c2 = 2;
- static CT const c6 = 6;
- static CT const c1000 = 1000;
- static CT const pi = math::pi<CT>();
- CT const one_minus_f = c1 - f;
- CT const x_thresh = c1000 * tol2;
- // Return a starting point for Newton's method in sin_alpha1
- // and cos_alpha1 (function value is -1). If Newton's method
- // doesn't need to be used, return also sin_alpha2 and
- // cos_alpha2 and function value is sig12.
- CT sig12 = -c1;
- // bet12 = bet2 - bet1 in [0, pi); beta12a = bet2 + bet1 in (-pi, 0]
- CT sin_beta12 = sin_beta2 * cos_beta1 - cos_beta2 * sin_beta1;
- CT cos_beta12 = cos_beta2 * cos_beta1 + sin_beta2 * sin_beta1;
- CT sin_beta12a = sin_beta2 * cos_beta1 + cos_beta2 * sin_beta1;
- bool shortline = cos_beta12 >= c0 && sin_beta12 < c0_5 &&
- cos_beta2 * lam12 < c0_5;
- CT sin_omega12, cos_omega12;
- if (shortline)
- {
- CT sin_beta_m2 = math::sqr(sin_beta1 + sin_beta2);
- sin_beta_m2 /= sin_beta_m2 + math::sqr(cos_beta1 + cos_beta2);
- dnm = math::sqrt(c1 + ep2 * sin_beta_m2);
- CT omega12 = lam12 / (one_minus_f * dnm);
- sin_omega12 = sin(omega12);
- cos_omega12 = cos(omega12);
- }
- else
- {
- sin_omega12 = sin_lam12;
- cos_omega12 = cos_lam12;
- }
- sin_alpha1 = cos_beta2 * sin_omega12;
- cos_alpha1 = cos_omega12 >= c0 ?
- sin_beta12 + cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 + cos_omega12) :
- sin_beta12a - cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 - cos_omega12);
- CT sin_sigma12 = boost::math::hypot(sin_alpha1, cos_alpha1);
- CT cos_sigma12 = sin_beta1 * sin_beta2 + cos_beta1 * cos_beta2 * cos_omega12;
- if (shortline && sin_sigma12 < etol2)
- {
- sin_alpha2 = cos_beta1 * sin_omega12;
- cos_alpha2 = sin_beta12 - cos_beta1 * sin_beta2 *
- (cos_omega12 >= c0 ? math::sqr(sin_omega12) /
- (c1 + cos_omega12) : c1 - cos_omega12);
- math::normalize_unit_vector<CT>(sin_alpha2, cos_alpha2);
- // Set return value.
- sig12 = atan2(sin_sigma12, cos_sigma12);
- }
- // Skip astroid calculation if too eccentric.
- else if (std::abs(n) > c0_1 ||
- cos_sigma12 >= c0 ||
- sin_sigma12 >= c6 * std::abs(n) * pi *
- math::sqr(cos_beta1))
- {
- // Nothing to do, zeroth order spherical approximation will do.
- }
- else
- {
- // Scale lam12 and bet2 to x, y coordinate system where antipodal
- // point is at origin and singular point is at y = 0, x = -1.
- CT lambda_scale, beta_scale;
- CT y;
- volatile CT x;
- CT lam12x = atan2(-sin_lam12, -cos_lam12);
- if (f >= c0)
- {
- CT k2 = math::sqr(sin_beta1) * ep2;
- CT eps = k2 / (c2 * (c1 + sqrt(c1 + k2)) + k2);
- se::coeffs_A3<SeriesOrder, CT> const coeffs_A3(n);
- CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end());
- lambda_scale = f * cos_beta1 * A3 * pi;
- beta_scale = lambda_scale * cos_beta1;
- x = lam12x / lambda_scale;
- y = sin_beta12a / beta_scale;
- }
- else
- {
- CT cos_beta12a = cos_beta2 * cos_beta1 - sin_beta2 * sin_beta1;
- CT beta12a = atan2(sin_beta12a, cos_beta12a);
- CT m12b = c0;
- CT m0 = c1;
- CT dummy;
- meridian_length(n, ep2, pi + beta12a,
- sin_beta1, -cos_beta1, dn1,
- sin_beta2, cos_beta2, dn2,
- cos_beta1, cos_beta2, dummy,
- m12b, m0, dummy, dummy, coeffs_C1);
- x = -c1 + m12b / (cos_beta1 * cos_beta2 * m0 * pi);
- beta_scale = x < -c0_01
- ? sin_beta12a / x
- : -f * math::sqr(cos_beta1) * pi;
- lambda_scale = beta_scale / cos_beta1;
- y = lam12x / lambda_scale;
- }
- if (y > -tol1 && x > -c1 - x_thresh)
- {
- // Strip near cut.
- if (f >= c0)
- {
- sin_alpha1 = (std::min)(c1, -CT(x));
- cos_alpha1 = - math::sqrt(c1 - math::sqr(sin_alpha1));
- }
- else
- {
- cos_alpha1 = (std::max)(CT(x > -tol1 ? c0 : -c1), CT(x));
- sin_alpha1 = math::sqrt(c1 - math::sqr(cos_alpha1));
- }
- }
- else
- {
- // Solve the astroid problem.
- CT k = astroid(CT(x), y);
- CT omega12a = lambda_scale * (f >= c0 ? -x * k /
- (c1 + k) : -y * (c1 + k) / k);
- sin_omega12 = sin(omega12a);
- cos_omega12 = -cos(omega12a);
- // Update spherical estimate of alpha1 using omgega12 instead of lam12.
- sin_alpha1 = cos_beta2 * sin_omega12;
- cos_alpha1 = sin_beta12a - cos_beta2 * sin_beta1 *
- math::sqr(sin_omega12) / (c1 - cos_omega12);
- }
- }
- // Sanity check on starting guess. Backwards check allows NaN through.
- if (!(sin_alpha1 <= c0))
- {
- math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
- }
- else
- {
- sin_alpha1 = c1;
- cos_alpha1 = c0;
- }
- return sig12;
- }
- /*
- Solve the astroid problem using the equation:
- κ4 + 2κ3 + (1 − x2 − y 2 )κ2 − 2y 2 κ − y 2 = 0.
- For details, please refer to Eq. (65) in,
- Geodesics on an ellipsoid of revolution, Charles F.F Karney,
- https://arxiv.org/abs/1102.1215
- */
- static inline CT astroid(CT const& x, CT const& y)
- {
- static CT const c0 = 0;
- static CT const c1 = 1;
- static CT const c2 = 2;
- static CT const c3 = 3;
- static CT const c4 = 4;
- static CT const c6 = 6;
- CT k;
- CT p = math::sqr(x);
- CT q = math::sqr(y);
- CT r = (p + q - c1) / c6;
- if (!(q == c0 && r <= c0))
- {
- // Avoid possible division by zero when r = 0 by multiplying
- // equations for s and t by r^3 and r, respectively.
- CT S = p * q / c4;
- CT r2 = math::sqr(r);
- CT r3 = r * r2;
- // The discriminant of the quadratic equation for T3. This is
- // zero on the evolute curve p^(1/3)+q^(1/3) = 1.
- CT discriminant = S * (S + c2 * r3);
- CT u = r;
- if (discriminant >= c0)
- {
- CT T3 = S + r3;
- // Pick the sign on the sqrt to maximize abs(T3). This minimizes
- // loss of precision due to cancellation. The result is unchanged
- // because of the way the T is used in definition of u.
- T3 += T3 < c0 ? -std::sqrt(discriminant) : std::sqrt(discriminant);
- CT T = std::cbrt(T3);
- // T can be zero; but then r2 / T -> 0.
- u += T + (T != c0 ? r2 / T : c0);
- }
- else
- {
- CT ang = std::atan2(std::sqrt(-discriminant), -(S + r3));
- // There are three possible cube roots. We choose the root which avoids
- // cancellation. Note that discriminant < 0 implies that r < 0.
- u += c2 * r * cos(ang / c3);
- }
- CT v = std::sqrt(math::sqr(u) + q);
- // Avoid loss of accuracy when u < 0.
- CT uv = u < c0 ? q / (v - u) : u + v;
- CT w = (uv - q) / (c2 * v);
- // Rearrange expression for k to avoid loss of accuracy due to
- // subtraction. Division by 0 not possible because uv > 0, w >= 0.
- k = uv / (std::sqrt(uv + math::sqr(w)) + w);
- }
- else // q == 0 && r <= 0
- {
- // y = 0 with |x| <= 1. Handle this case directly.
- // For y small, positive root is k = abs(y)/sqrt(1-x^2).
- k = c0;
- }
- return k;
- }
- template <typename CoeffsC1>
- static inline CT lambda12(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1,
- CT const& sin_beta2, CT const& cos_beta2, CT const& dn2,
- CT const& sin_alpha1, CT cos_alpha1,
- CT const& sin_lam120, CT const& cos_lam120,
- CT& sin_alpha2, CT& cos_alpha2,
- CT& sigma12,
- CT& sin_sigma1, CT& cos_sigma1,
- CT& sin_sigma2, CT& cos_sigma2,
- CT& eps, CT& diff_omega12,
- bool diffp, CT& diff_lam12,
- CT const& f, CT const& n, CT const& ep2, CT const& tiny,
- CoeffsC1 const& coeffs_C1)
- {
- static CT const c0 = 0;
- static CT const c1 = 1;
- static CT const c2 = 2;
- CT const one_minus_f = c1 - f;
- if (sin_beta1 == c0 && cos_alpha1 == c0)
- {
- // Break degeneracy of equatorial line.
- cos_alpha1 = -tiny;
- }
- CT sin_alpha0 = sin_alpha1 * cos_beta1;
- CT cos_alpha0 = boost::math::hypot(cos_alpha1, sin_alpha1 * sin_beta1);
- CT sin_omega1, cos_omega1;
- CT sin_omega2, cos_omega2;
- CT sin_omega12, cos_omega12;
- CT lam12;
- sin_sigma1 = sin_beta1;
- sin_omega1 = sin_alpha0 * sin_beta1;
- cos_sigma1 = cos_omega1 = cos_alpha1 * cos_beta1;
- math::normalize_unit_vector<CT>(sin_sigma1, cos_sigma1);
- // Enforce symmetries in the case abs(beta2) = -beta1.
- // Otherwise, this can yield singularities in the Newton iteration.
- // sin(alpha2) * cos(beta2) = sin(alpha0).
- sin_alpha2 = cos_beta2 != cos_beta1 ?
- sin_alpha0 / cos_beta2 : sin_alpha1;
- cos_alpha2 = cos_beta2 != cos_beta1 || std::abs(sin_beta2) != -sin_beta1 ?
- sqrt(math::sqr(cos_alpha1 * cos_beta1) +
- (cos_beta1 < -sin_beta1 ?
- (cos_beta2 - cos_beta1) * (cos_beta1 + cos_beta2) :
- (sin_beta1 - sin_beta2) * (sin_beta1 + sin_beta2))) / cos_beta2 :
- std::abs(cos_alpha1);
- sin_sigma2 = sin_beta2;
- sin_omega2 = sin_alpha0 * sin_beta2;
- cos_sigma2 = cos_omega2 =
- (cos_alpha2 * cos_beta2);
- // Break degeneracy of equatorial line.
- math::normalize_unit_vector<CT>(sin_sigma2, cos_sigma2);
- // sig12 = sig2 - sig1, limit to [0, pi].
- sigma12 = atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2),
- cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2);
- // omg12 = omg2 - omg1, limit to [0, pi].
- sin_omega12 = (std::max)(c0, cos_omega1 * sin_omega2 - sin_omega1 * cos_omega2);
- cos_omega12 = cos_omega1 * cos_omega2 + sin_omega1 * sin_omega2;
- // eta = omg12 - lam120.
- CT eta = atan2(sin_omega12 * cos_lam120 - cos_omega12 * sin_lam120,
- cos_omega12 * cos_lam120 + sin_omega12 * sin_lam120);
- CT B312;
- CT k2 = math::sqr(cos_alpha0) * ep2;
- eps = k2 / (c2 * (c1 + std::sqrt(c1 + k2)) + k2);
- se::coeffs_C3<SeriesOrder, CT> const coeffs_C3(n, eps);
- B312 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C3)
- - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C3);
- se::coeffs_A3<SeriesOrder, CT> const coeffs_A3(n);
- CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end());
- diff_omega12 = -f * A3 * sin_alpha0 * (sigma12 + B312);
- lam12 = eta + diff_omega12;
- if (diffp)
- {
- if (cos_alpha2 == c0)
- {
- diff_lam12 = - c2 * one_minus_f * dn1 / sin_beta1;
- }
- else
- {
- CT dummy;
- meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
- sin_sigma2, cos_sigma2, dn2,
- cos_beta1, cos_beta2, dummy,
- diff_lam12, dummy, dummy,
- dummy, coeffs_C1);
- diff_lam12 *= one_minus_f / (cos_alpha2 * cos_beta2);
- }
- }
- return lam12;
- }
- };
- } // namespace detail
- /*!
- \brief The solution of the inverse problem of geodesics on latlong coordinates,
- after Karney (2011).
- \author See
- - Charles F.F Karney, Algorithms for geodesics, 2011
- https://arxiv.org/pdf/1109.4448.pdf
- */
- template <
- typename CT,
- bool EnableDistance,
- bool EnableAzimuth,
- bool EnableReverseAzimuth = false,
- bool EnableReducedLength = false,
- bool EnableGeodesicScale = false
- >
- struct karney_inverse
- : detail::karney_inverse
- <
- CT,
- EnableDistance,
- EnableAzimuth,
- EnableReverseAzimuth,
- EnableReducedLength,
- EnableGeodesicScale
- >
- {};
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
|