123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- // Copyright (c) 2011 The Chromium Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style license that can be
- // found in the LICENSE file.
- //
- // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- // PLEASE READ: Do you really need a singleton? If possible, use a
- // function-local static of type base::NoDestructor<T> instead:
- //
- // Factory& Factory::GetInstance() {
- // static base::NoDestructor<Factory> instance;
- // return *instance;
- // }
- // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- //
- // Singletons make it hard to determine the lifetime of an object, which can
- // lead to buggy code and spurious crashes.
- //
- // Instead of adding another singleton into the mix, try to identify either:
- // a) An existing singleton that can manage your object's lifetime
- // b) Locations where you can deterministically create the object and pass
- // into other objects
- //
- // If you absolutely need a singleton, please keep them as trivial as possible
- // and ideally a leaf dependency. Singletons get problematic when they attempt
- // to do too much in their destructor or have circular dependencies.
- #ifndef BASE_MEMORY_SINGLETON_H_
- #define BASE_MEMORY_SINGLETON_H_
- #include "base/at_exit.h"
- #include "base/atomicops.h"
- #include "base/base_export.h"
- #include "base/check_op.h"
- #include "base/lazy_instance_helpers.h"
- #include "base/macros.h"
- #include "base/threading/thread_restrictions.h"
- namespace base {
- // Default traits for Singleton<Type>. Calls operator new and operator delete on
- // the object. Registers automatic deletion at process exit.
- // Overload if you need arguments or another memory allocation function.
- template<typename Type>
- struct DefaultSingletonTraits {
- // Allocates the object.
- static Type* New() {
- // The parenthesis is very important here; it forces POD type
- // initialization.
- return new Type();
- }
- // Destroys the object.
- static void Delete(Type* x) {
- delete x;
- }
- // Set to true to automatically register deletion of the object on process
- // exit. See below for the required call that makes this happen.
- static const bool kRegisterAtExit = true;
- #if DCHECK_IS_ON()
- // Set to false to disallow access on a non-joinable thread. This is
- // different from kRegisterAtExit because StaticMemorySingletonTraits allows
- // access on non-joinable threads, and gracefully handles this.
- static const bool kAllowedToAccessOnNonjoinableThread = false;
- #endif
- };
- // Alternate traits for use with the Singleton<Type>. Identical to
- // DefaultSingletonTraits except that the Singleton will not be cleaned up
- // at exit.
- template<typename Type>
- struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
- static const bool kRegisterAtExit = false;
- #if DCHECK_IS_ON()
- static const bool kAllowedToAccessOnNonjoinableThread = true;
- #endif
- };
- // Alternate traits for use with the Singleton<Type>. Allocates memory
- // for the singleton instance from a static buffer. The singleton will
- // be cleaned up at exit, but can't be revived after destruction unless
- // the ResurrectForTesting() method is called.
- //
- // This is useful for a certain category of things, notably logging and
- // tracing, where the singleton instance is of a type carefully constructed to
- // be safe to access post-destruction.
- // In logging and tracing you'll typically get stray calls at odd times, like
- // during static destruction, thread teardown and the like, and there's a
- // termination race on the heap-based singleton - e.g. if one thread calls
- // get(), but then another thread initiates AtExit processing, the first thread
- // may call into an object residing in unallocated memory. If the instance is
- // allocated from the data segment, then this is survivable.
- //
- // The destructor is to deallocate system resources, in this case to unregister
- // a callback the system will invoke when logging levels change. Note that
- // this is also used in e.g. Chrome Frame, where you have to allow for the
- // possibility of loading briefly into someone else's process space, and
- // so leaking is not an option, as that would sabotage the state of your host
- // process once you've unloaded.
- template <typename Type>
- struct StaticMemorySingletonTraits {
- // WARNING: User has to support a New() which returns null.
- static Type* New() {
- // Only constructs once and returns pointer; otherwise returns null.
- if (subtle::NoBarrier_AtomicExchange(&dead_, 1))
- return nullptr;
- return new (buffer_) Type();
- }
- static void Delete(Type* p) {
- if (p)
- p->Type::~Type();
- }
- static const bool kRegisterAtExit = true;
- #if DCHECK_IS_ON()
- static const bool kAllowedToAccessOnNonjoinableThread = true;
- #endif
- static void ResurrectForTesting() { subtle::NoBarrier_Store(&dead_, 0); }
- private:
- alignas(Type) static char buffer_[sizeof(Type)];
- // Signal the object was already deleted, so it is not revived.
- static subtle::Atomic32 dead_;
- };
- template <typename Type>
- alignas(Type) char StaticMemorySingletonTraits<Type>::buffer_[sizeof(Type)];
- template <typename Type>
- subtle::Atomic32 StaticMemorySingletonTraits<Type>::dead_ = 0;
- // The Singleton<Type, Traits, DifferentiatingType> class manages a single
- // instance of Type which will be created on first use and will be destroyed at
- // normal process exit). The Trait::Delete function will not be called on
- // abnormal process exit.
- //
- // DifferentiatingType is used as a key to differentiate two different
- // singletons having the same memory allocation functions but serving a
- // different purpose. This is mainly used for Locks serving different purposes.
- //
- // Example usage:
- //
- // In your header:
- // namespace base {
- // template <typename T>
- // struct DefaultSingletonTraits;
- // }
- // class FooClass {
- // public:
- // static FooClass* GetInstance(); <-- See comment below on this.
- // void Bar() { ... }
- // private:
- // FooClass() { ... }
- // friend struct base::DefaultSingletonTraits<FooClass>;
- //
- // DISALLOW_COPY_AND_ASSIGN(FooClass);
- // };
- //
- // In your source file:
- // #include "base/memory/singleton.h"
- // FooClass* FooClass::GetInstance() {
- // return base::Singleton<FooClass>::get();
- // }
- //
- // Or for leaky singletons:
- // #include "base/memory/singleton.h"
- // FooClass* FooClass::GetInstance() {
- // return base::Singleton<
- // FooClass, base::LeakySingletonTraits<FooClass>>::get();
- // }
- //
- // And to call methods on FooClass:
- // FooClass::GetInstance()->Bar();
- //
- // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
- // and it is important that FooClass::GetInstance() is not inlined in the
- // header. This makes sure that when source files from multiple targets include
- // this header they don't end up with different copies of the inlined code
- // creating multiple copies of the singleton.
- //
- // Singleton<> has no non-static members and doesn't need to actually be
- // instantiated.
- //
- // This class is itself thread-safe. The underlying Type must of course be
- // thread-safe if you want to use it concurrently. Two parameters may be tuned
- // depending on the user's requirements.
- //
- // Glossary:
- // RAE = kRegisterAtExit
- //
- // On every platform, if Traits::RAE is true, the singleton will be destroyed at
- // process exit. More precisely it uses AtExitManager which requires an
- // object of this type to be instantiated. AtExitManager mimics the semantics
- // of atexit() such as LIFO order but under Windows is safer to call. For more
- // information see at_exit.h.
- //
- // If Traits::RAE is false, the singleton will not be freed at process exit,
- // thus the singleton will be leaked if it is ever accessed. Traits::RAE
- // shouldn't be false unless absolutely necessary. Remember that the heap where
- // the object is allocated may be destroyed by the CRT anyway.
- //
- // Caveats:
- // (a) Every call to get(), operator->() and operator*() incurs some overhead
- // (16ns on my P4/2.8GHz) to check whether the object has already been
- // initialized. You may wish to cache the result of get(); it will not
- // change.
- //
- // (b) Your factory function must never throw an exception. This class is not
- // exception-safe.
- //
- template <typename Type,
- typename Traits = DefaultSingletonTraits<Type>,
- typename DifferentiatingType = Type>
- class Singleton {
- private:
- // A class T using the Singleton<T> pattern should declare a GetInstance()
- // method and call Singleton::get() from within that. T may also declare a
- // GetInstanceIfExists() method to invoke Singleton::GetIfExists().
- friend Type;
- // This class is safe to be constructed and copy-constructed since it has no
- // member.
- // Returns a pointer to the one true instance of the class.
- static Type* get() {
- #if DCHECK_IS_ON()
- if (!Traits::kAllowedToAccessOnNonjoinableThread)
- ThreadRestrictions::AssertSingletonAllowed();
- #endif
- return subtle::GetOrCreateLazyPointer(
- &instance_, &CreatorFunc, nullptr,
- Traits::kRegisterAtExit ? OnExit : nullptr, nullptr);
- }
- // Returns the same result as get() if the instance exists but doesn't
- // construct it (and returns null) if it doesn't.
- static Type* GetIfExists() {
- #if DCHECK_IS_ON()
- if (!Traits::kAllowedToAccessOnNonjoinableThread)
- ThreadRestrictions::AssertSingletonAllowed();
- #endif
- if (!subtle::NoBarrier_Load(&instance_))
- return nullptr;
- // Need to invoke get() nonetheless as some Traits return null after
- // destruction (even though |instance_| still holds garbage).
- return get();
- }
- // Internal method used as an adaptor for GetOrCreateLazyPointer(). Do not use
- // outside of that use case.
- static Type* CreatorFunc(void* /* creator_arg*/) { return Traits::New(); }
- // Adapter function for use with AtExit(). This should be called single
- // threaded, so don't use atomic operations.
- // Calling OnExit while singleton is in use by other threads is a mistake.
- static void OnExit(void* /*unused*/) {
- // AtExit should only ever be register after the singleton instance was
- // created. We should only ever get here with a valid instance_ pointer.
- Traits::Delete(reinterpret_cast<Type*>(subtle::NoBarrier_Load(&instance_)));
- instance_ = 0;
- }
- static subtle::AtomicWord instance_;
- };
- template <typename Type, typename Traits, typename DifferentiatingType>
- subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::instance_ = 0;
- } // namespace base
- #endif // BASE_MEMORY_SINGLETON_H_
|