| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 | // Copyright 2017 The Chromium Authors. All rights reserved.// Use of this source code is governed by a BSD-style license that can be// found in the LICENSE file.#ifndef BASE_CONTAINERS_SPAN_H_#define BASE_CONTAINERS_SPAN_H_#include <stddef.h>#include <algorithm>#include <array>#include <iterator>#include <limits>#include <type_traits>#include <utility>#include "base/check_op.h"#include "base/containers/checked_iterators.h"#include "base/macros.h"#include "base/stl_util.h"#include "base/template_util.h"namespace base {// [views.constants]constexpr size_t dynamic_extent = std::numeric_limits<size_t>::max();template <typename T, size_t Extent = dynamic_extent>class span;namespace internal {template <size_t I>using size_constant = std::integral_constant<size_t, I>;template <typename T>struct ExtentImpl : size_constant<dynamic_extent> {};template <typename T, size_t N>struct ExtentImpl<T[N]> : size_constant<N> {};template <typename T, size_t N>struct ExtentImpl<std::array<T, N>> : size_constant<N> {};template <typename T, size_t N>struct ExtentImpl<base::span<T, N>> : size_constant<N> {};template <typename T>using Extent = ExtentImpl<std::remove_cv_t<std::remove_reference_t<T>>>;template <typename T>struct IsSpanImpl : std::false_type {};template <typename T, size_t Extent>struct IsSpanImpl<span<T, Extent>> : std::true_type {};template <typename T>using IsNotSpan = negation<IsSpanImpl<std::decay_t<T>>>;template <typename T>struct IsStdArrayImpl : std::false_type {};template <typename T, size_t N>struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};template <typename T>using IsNotStdArray = negation<IsStdArrayImpl<std::decay_t<T>>>;template <typename T>using IsNotCArray = negation<std::is_array<std::remove_reference_t<T>>>;template <typename From, typename To>using IsLegalDataConversion = std::is_convertible<From (*)[], To (*)[]>;template <typename Container, typename T>using ContainerHasConvertibleData = IsLegalDataConversion<    std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>,    T>;template <typename Container>using ContainerHasIntegralSize =    std::is_integral<decltype(base::size(std::declval<Container>()))>;template <typename From, size_t FromExtent, typename To, size_t ToExtent>using EnableIfLegalSpanConversion =    std::enable_if_t<(ToExtent == dynamic_extent || ToExtent == FromExtent) &&                     IsLegalDataConversion<From, To>::value>;// SFINAE check if Array can be converted to a span<T>.template <typename Array, typename T, size_t Extent>using EnableIfSpanCompatibleArray =    std::enable_if_t<(Extent == dynamic_extent ||                      Extent == internal::Extent<Array>::value) &&                     ContainerHasConvertibleData<Array, T>::value>;// SFINAE check if Container can be converted to a span<T>.template <typename Container, typename T>using IsSpanCompatibleContainer =    conjunction<IsNotSpan<Container>,                IsNotStdArray<Container>,                IsNotCArray<Container>,                ContainerHasConvertibleData<Container, T>,                ContainerHasIntegralSize<Container>>;template <typename Container, typename T>using EnableIfSpanCompatibleContainer =    std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value>;template <typename Container, typename T, size_t Extent>using EnableIfSpanCompatibleContainerAndSpanIsDynamic =    std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value &&                     Extent == dynamic_extent>;// A helper template for storing the size of a span. Spans with static extents// don't require additional storage, since the extent itself is specified in the// template parameter.template <size_t Extent>class ExtentStorage { public:  constexpr explicit ExtentStorage(size_t size) noexcept {}  constexpr size_t size() const noexcept { return Extent; }};// Specialization of ExtentStorage for dynamic extents, which do require// explicit storage for the size.template <>struct ExtentStorage<dynamic_extent> {  constexpr explicit ExtentStorage(size_t size) noexcept : size_(size) {}  constexpr size_t size() const noexcept { return size_; } private:  size_t size_;};// must_not_be_dynamic_extent prevents |dynamic_extent| from being returned in a// constexpr context.template <size_t kExtent>constexpr size_t must_not_be_dynamic_extent() {  static_assert(      kExtent != dynamic_extent,      "EXTENT should only be used for containers with a static extent.");  return kExtent;}}  // namespace internal// A span is a value type that represents an array of elements of type T. Since// it only consists of a pointer to memory with an associated size, it is very// light-weight. It is cheap to construct, copy, move and use spans, so that// users are encouraged to use it as a pass-by-value parameter. A span does not// own the underlying memory, so care must be taken to ensure that a span does// not outlive the backing store.//// span is somewhat analogous to StringPiece, but with arbitrary element types,// allowing mutation if T is non-const.//// span is implicitly convertible from C++ arrays, as well as most [1]// container-like types that provide a data() and size() method (such as// std::vector<T>). A mutable span<T> can also be implicitly converted to an// immutable span<const T>.//// Consider using a span for functions that take a data pointer and size// parameter: it allows the function to still act on an array-like type, while// allowing the caller code to be a bit more concise.//// For read-only data access pass a span<const T>: the caller can supply either// a span<const T> or a span<T>, while the callee will have a read-only view.// For read-write access a mutable span<T> is required.//// Without span://   Read-Only://     // std::string HexEncode(const uint8_t* data, size_t size);//     std::vector<uint8_t> data_buffer = GenerateData();//     std::string r = HexEncode(data_buffer.data(), data_buffer.size());////  Mutable://     // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);//     char str_buffer[100];//     SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);//// With span://   Read-Only://     // std::string HexEncode(base::span<const uint8_t> data);//     std::vector<uint8_t> data_buffer = GenerateData();//     std::string r = HexEncode(data_buffer);////  Mutable://     // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);//     char str_buffer[100];//     SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);//// Spans with "const" and pointers// -------------------------------//// Const and pointers can get confusing. Here are vectors of pointers and their// corresponding spans:////   const std::vector<int*>        =>  base::span<int* const>//   std::vector<const int*>        =>  base::span<const int*>//   const std::vector<const int*>  =>  base::span<const int* const>//// Differences from the C++20 draft// --------------------------------//// http://eel.is/c++draft/views contains the latest C++20 draft of std::span.// Chromium tries to follow the draft as close as possible. Differences between// the draft and the implementation are documented in subsections below.//// Differences from [span.objectrep]:// - as_bytes() and as_writable_bytes() return spans of uint8_t instead of//   std::byte (std::byte is a C++17 feature)//// Differences from [span.cons]:// - Constructing a static span (i.e. Extent != dynamic_extent) from a dynamic//   sized container (e.g. std::vector) requires an explicit conversion (in the//   C++20 draft this is simply UB)//// Differences from [span.obs]:// - empty() is marked with WARN_UNUSED_RESULT instead of [[nodiscard]]//   ([[nodiscard]] is a C++17 feature)//// Furthermore, all constructors and methods are marked noexcept due to the lack// of exceptions in Chromium.//// Due to the lack of class template argument deduction guides in C++14// appropriate make_span() utility functions are provided.// [span], class template spantemplate <typename T, size_t Extent>class span : public internal::ExtentStorage<Extent> { private:  using ExtentStorage = internal::ExtentStorage<Extent>; public:  using element_type = T;  using value_type = std::remove_cv_t<T>;  using size_type = size_t;  using difference_type = ptrdiff_t;  using pointer = T*;  using reference = T&;  using iterator = CheckedContiguousIterator<T>;  // TODO(https://crbug.com/828324): Drop the const_iterator typedef once gMock  // supports containers without this nested type.  using const_iterator = iterator;  using reverse_iterator = std::reverse_iterator<iterator>;  static constexpr size_t extent = Extent;  // [span.cons], span constructors, copy, assignment, and destructor  constexpr span() noexcept : ExtentStorage(0), data_(nullptr) {    static_assert(Extent == dynamic_extent || Extent == 0, "Invalid Extent");  }  constexpr span(T* data, size_t size) noexcept      : ExtentStorage(size), data_(data) {    CHECK(Extent == dynamic_extent || Extent == size);  }  // Artificially templatized to break ambiguity for span(ptr, 0).  template <typename = void>  constexpr span(T* begin, T* end) noexcept : span(begin, end - begin) {    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.    CHECK(begin <= end);  }  template <      size_t N,      typename = internal::EnableIfSpanCompatibleArray<T (&)[N], T, Extent>>  constexpr span(T (&array)[N]) noexcept : span(base::data(array), N) {}  template <      typename U,      size_t N,      typename =          internal::EnableIfSpanCompatibleArray<std::array<U, N>&, T, Extent>>  constexpr span(std::array<U, N>& array) noexcept      : span(base::data(array), N) {}  template <typename U,            size_t N,            typename = internal::                EnableIfSpanCompatibleArray<const std::array<U, N>&, T, Extent>>  constexpr span(const std::array<U, N>& array) noexcept      : span(base::data(array), N) {}  // Conversion from a container that has compatible base::data() and integral  // base::size().  template <      typename Container,      typename =          internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<Container&,                                                                    T,                                                                    Extent>>  constexpr span(Container& container) noexcept      : span(base::data(container), base::size(container)) {}  template <      typename Container,      typename = internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<          const Container&,          T,          Extent>>  constexpr span(const Container& container) noexcept      : span(base::data(container), base::size(container)) {}  constexpr span(const span& other) noexcept = default;  // Conversions from spans of compatible types and extents: this allows a  // span<T> to be seamlessly used as a span<const T>, but not the other way  // around. If extent is not dynamic, OtherExtent has to be equal to Extent.  template <      typename U,      size_t OtherExtent,      typename =          internal::EnableIfLegalSpanConversion<U, OtherExtent, T, Extent>>  constexpr span(const span<U, OtherExtent>& other)      : span(other.data(), other.size()) {}  constexpr span& operator=(const span& other) noexcept = default;  ~span() noexcept = default;  // [span.sub], span subviews  template <size_t Count>  constexpr span<T, Count> first() const noexcept {    static_assert(Count <= Extent, "Count must not exceed Extent");    CHECK(Extent != dynamic_extent || Count <= size());    return {data(), Count};  }  template <size_t Count>  constexpr span<T, Count> last() const noexcept {    static_assert(Count <= Extent, "Count must not exceed Extent");    CHECK(Extent != dynamic_extent || Count <= size());    return {data() + (size() - Count), Count};  }  template <size_t Offset, size_t Count = dynamic_extent>  constexpr span<T,                 (Count != dynamic_extent                      ? Count                      : (Extent != dynamic_extent ? Extent - Offset                                                  : dynamic_extent))>  subspan() const noexcept {    static_assert(Offset <= Extent, "Offset must not exceed Extent");    static_assert(Count == dynamic_extent || Count <= Extent - Offset,                  "Count must not exceed Extent - Offset");    CHECK(Extent != dynamic_extent || Offset <= size());    CHECK(Extent != dynamic_extent || Count == dynamic_extent ||          Count <= size() - Offset);    return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset};  }  constexpr span<T, dynamic_extent> first(size_t count) const noexcept {    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.    CHECK(count <= size());    return {data(), count};  }  constexpr span<T, dynamic_extent> last(size_t count) const noexcept {    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.    CHECK(count <= size());    return {data() + (size() - count), count};  }  constexpr span<T, dynamic_extent> subspan(size_t offset,                                            size_t count = dynamic_extent) const      noexcept {    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.    CHECK(offset <= size());    CHECK(count == dynamic_extent || count <= size() - offset);    return {data() + offset, count != dynamic_extent ? count : size() - offset};  }  // [span.obs], span observers  constexpr size_t size() const noexcept { return ExtentStorage::size(); }  constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }  constexpr bool empty() const noexcept WARN_UNUSED_RESULT {    return size() == 0;  }  // [span.elem], span element access  constexpr T& operator[](size_t idx) const noexcept {    // Note: CHECK_LT is not constexpr, hence regular CHECK must be used.    CHECK(idx < size());    return *(data() + idx);  }  constexpr T& front() const noexcept {    static_assert(Extent == dynamic_extent || Extent > 0,                  "Extent must not be 0");    CHECK(Extent != dynamic_extent || !empty());    return *data();  }  constexpr T& back() const noexcept {    static_assert(Extent == dynamic_extent || Extent > 0,                  "Extent must not be 0");    CHECK(Extent != dynamic_extent || !empty());    return *(data() + size() - 1);  }  constexpr T* data() const noexcept { return data_; }  // [span.iter], span iterator support  constexpr iterator begin() const noexcept {    return iterator(data_, data_ + size());  }  constexpr iterator end() const noexcept {    return iterator(data_, data_ + size(), data_ + size());  }  constexpr reverse_iterator rbegin() const noexcept {    return reverse_iterator(end());  }  constexpr reverse_iterator rend() const noexcept {    return reverse_iterator(begin());  } private:  T* data_;};// span<T, Extent>::extent can not be declared inline prior to C++17, hence this// definition is required.template <class T, size_t Extent>constexpr size_t span<T, Extent>::extent;// [span.objectrep], views of object representationtemplate <typename T, size_t X>span<const uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>as_bytes(span<T, X> s) noexcept {  return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};}template <typename T,          size_t X,          typename = std::enable_if_t<!std::is_const<T>::value>>span<uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>as_writable_bytes(span<T, X> s) noexcept {  return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};}// Type-deducing helpers for constructing a span.template <int&... ExplicitArgumentBarrier, typename T>constexpr span<T> make_span(T* data, size_t size) noexcept {  return {data, size};}template <int&... ExplicitArgumentBarrier, typename T>constexpr span<T> make_span(T* begin, T* end) noexcept {  return {begin, end};}// make_span utility function that deduces both the span's value_type and extent// from the passed in argument.//// Usage: auto span = base::make_span(...);template <int&... ExplicitArgumentBarrier, typename Container>constexpr auto make_span(Container&& container) noexcept {  using T =      std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>;  using Extent = internal::Extent<Container>;  return span<T, Extent::value>(std::forward<Container>(container));}// make_span utility function that allows callers to explicit specify the span's// extent, the value_type is deduced automatically. This is useful when passing// a dynamically sized container to a method expecting static spans, when the// container is known to have the correct size.//// Note: This will CHECK that N indeed matches size(container).//// Usage: auto static_span = base::make_span<N>(...);template <size_t N, int&... ExplicitArgumentBarrier, typename Container>constexpr auto make_span(Container&& container) noexcept {  using T =      std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>;  return span<T, N>(base::data(container), base::size(container));}}  // namespace base// EXTENT returns the size of any type that can be converted to a |base::span|// with definite extent, i.e. everything that is a contiguous storage of some// sort with static size. Specifically, this works for std::array in a constexpr// context. Note://   * |base::size| should be preferred for plain arrays.//   * In run-time contexts, functions such as |std::array::size| should be//     preferred.#define EXTENT(x)                                        \  ::base::internal::must_not_be_dynamic_extent<decltype( \      ::base::make_span(x))::extent>()#endif  // BASE_CONTAINERS_SPAN_H_
 |