123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620 |
- // Boost.Polygon library voronoi_diagram.hpp header file
- // Copyright Andrii Sydorchuk 2010-2012.
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // See http://www.boost.org for updates, documentation, and revision history.
- #ifndef BOOST_POLYGON_VORONOI_DIAGRAM
- #define BOOST_POLYGON_VORONOI_DIAGRAM
- #include <vector>
- #include <utility>
- #include "detail/voronoi_ctypes.hpp"
- #include "detail/voronoi_structures.hpp"
- #include "voronoi_geometry_type.hpp"
- namespace boost {
- namespace polygon {
- // Forward declarations.
- template <typename T>
- class voronoi_edge;
- // Represents Voronoi cell.
- // Data members:
- // 1) index of the source within the initial input set
- // 2) pointer to the incident edge
- // 3) mutable color member
- // Cell may contain point or segment site inside.
- template <typename T>
- class voronoi_cell {
- public:
- typedef T coordinate_type;
- typedef std::size_t color_type;
- typedef voronoi_edge<coordinate_type> voronoi_edge_type;
- typedef std::size_t source_index_type;
- typedef SourceCategory source_category_type;
- voronoi_cell(source_index_type source_index,
- source_category_type source_category) :
- source_index_(source_index),
- incident_edge_(NULL),
- color_(source_category) {}
- // Returns true if the cell contains point site, false else.
- bool contains_point() const {
- source_category_type source_category = this->source_category();
- return belongs(source_category, GEOMETRY_CATEGORY_POINT);
- }
- // Returns true if the cell contains segment site, false else.
- bool contains_segment() const {
- source_category_type source_category = this->source_category();
- return belongs(source_category, GEOMETRY_CATEGORY_SEGMENT);
- }
- source_index_type source_index() const {
- return source_index_;
- }
- source_category_type source_category() const {
- return static_cast<source_category_type>(color_ & SOURCE_CATEGORY_BITMASK);
- }
- // Degenerate cells don't have any incident edges.
- bool is_degenerate() const { return incident_edge_ == NULL; }
- voronoi_edge_type* incident_edge() { return incident_edge_; }
- const voronoi_edge_type* incident_edge() const { return incident_edge_; }
- void incident_edge(voronoi_edge_type* e) { incident_edge_ = e; }
- color_type color() const { return color_ >> BITS_SHIFT; }
- void color(color_type color) const {
- color_ &= BITS_MASK;
- color_ |= color << BITS_SHIFT;
- }
- private:
- // 5 color bits are reserved.
- enum Bits {
- BITS_SHIFT = 0x5,
- BITS_MASK = 0x1F
- };
- source_index_type source_index_;
- voronoi_edge_type* incident_edge_;
- mutable color_type color_;
- };
- // Represents Voronoi vertex.
- // Data members:
- // 1) vertex coordinates
- // 2) pointer to the incident edge
- // 3) mutable color member
- template <typename T>
- class voronoi_vertex {
- public:
- typedef T coordinate_type;
- typedef std::size_t color_type;
- typedef voronoi_edge<coordinate_type> voronoi_edge_type;
- voronoi_vertex(const coordinate_type& x, const coordinate_type& y) :
- x_(x),
- y_(y),
- incident_edge_(NULL),
- color_(0) {}
- const coordinate_type& x() const { return x_; }
- const coordinate_type& y() const { return y_; }
- bool is_degenerate() const { return incident_edge_ == NULL; }
- voronoi_edge_type* incident_edge() { return incident_edge_; }
- const voronoi_edge_type* incident_edge() const { return incident_edge_; }
- void incident_edge(voronoi_edge_type* e) { incident_edge_ = e; }
- color_type color() const { return color_ >> BITS_SHIFT; }
- void color(color_type color) const {
- color_ &= BITS_MASK;
- color_ |= color << BITS_SHIFT;
- }
- private:
- // 5 color bits are reserved.
- enum Bits {
- BITS_SHIFT = 0x5,
- BITS_MASK = 0x1F
- };
- coordinate_type x_;
- coordinate_type y_;
- voronoi_edge_type* incident_edge_;
- mutable color_type color_;
- };
- // Half-edge data structure. Represents Voronoi edge.
- // Data members:
- // 1) pointer to the corresponding cell
- // 2) pointer to the vertex that is the starting
- // point of the half-edge
- // 3) pointer to the twin edge
- // 4) pointer to the CCW next edge
- // 5) pointer to the CCW prev edge
- // 6) mutable color member
- template <typename T>
- class voronoi_edge {
- public:
- typedef T coordinate_type;
- typedef voronoi_cell<coordinate_type> voronoi_cell_type;
- typedef voronoi_vertex<coordinate_type> voronoi_vertex_type;
- typedef voronoi_edge<coordinate_type> voronoi_edge_type;
- typedef std::size_t color_type;
- voronoi_edge(bool is_linear, bool is_primary) :
- cell_(NULL),
- vertex_(NULL),
- twin_(NULL),
- next_(NULL),
- prev_(NULL),
- color_(0) {
- if (is_linear)
- color_ |= BIT_IS_LINEAR;
- if (is_primary)
- color_ |= BIT_IS_PRIMARY;
- }
- voronoi_cell_type* cell() { return cell_; }
- const voronoi_cell_type* cell() const { return cell_; }
- void cell(voronoi_cell_type* c) { cell_ = c; }
- voronoi_vertex_type* vertex0() { return vertex_; }
- const voronoi_vertex_type* vertex0() const { return vertex_; }
- void vertex0(voronoi_vertex_type* v) { vertex_ = v; }
- voronoi_vertex_type* vertex1() { return twin_->vertex0(); }
- const voronoi_vertex_type* vertex1() const { return twin_->vertex0(); }
- voronoi_edge_type* twin() { return twin_; }
- const voronoi_edge_type* twin() const { return twin_; }
- void twin(voronoi_edge_type* e) { twin_ = e; }
- voronoi_edge_type* next() { return next_; }
- const voronoi_edge_type* next() const { return next_; }
- void next(voronoi_edge_type* e) { next_ = e; }
- voronoi_edge_type* prev() { return prev_; }
- const voronoi_edge_type* prev() const { return prev_; }
- void prev(voronoi_edge_type* e) { prev_ = e; }
- // Returns a pointer to the rotation next edge
- // over the starting point of the half-edge.
- voronoi_edge_type* rot_next() { return prev_->twin(); }
- const voronoi_edge_type* rot_next() const { return prev_->twin(); }
- // Returns a pointer to the rotation prev edge
- // over the starting point of the half-edge.
- voronoi_edge_type* rot_prev() { return twin_->next(); }
- const voronoi_edge_type* rot_prev() const { return twin_->next(); }
- // Returns true if the edge is finite (segment, parabolic arc).
- // Returns false if the edge is infinite (ray, line).
- bool is_finite() const { return vertex0() && vertex1(); }
- // Returns true if the edge is infinite (ray, line).
- // Returns false if the edge is finite (segment, parabolic arc).
- bool is_infinite() const { return !vertex0() || !vertex1(); }
- // Returns true if the edge is linear (segment, ray, line).
- // Returns false if the edge is curved (parabolic arc).
- bool is_linear() const {
- return (color_ & BIT_IS_LINEAR) ? true : false;
- }
- // Returns true if the edge is curved (parabolic arc).
- // Returns false if the edge is linear (segment, ray, line).
- bool is_curved() const {
- return (color_ & BIT_IS_LINEAR) ? false : true;
- }
- // Returns false if edge goes through the endpoint of the segment.
- // Returns true else.
- bool is_primary() const {
- return (color_ & BIT_IS_PRIMARY) ? true : false;
- }
- // Returns true if edge goes through the endpoint of the segment.
- // Returns false else.
- bool is_secondary() const {
- return (color_ & BIT_IS_PRIMARY) ? false : true;
- }
- color_type color() const { return color_ >> BITS_SHIFT; }
- void color(color_type color) const {
- color_ &= BITS_MASK;
- color_ |= color << BITS_SHIFT;
- }
- private:
- // 5 color bits are reserved.
- enum Bits {
- BIT_IS_LINEAR = 0x1, // linear is opposite to curved
- BIT_IS_PRIMARY = 0x2, // primary is opposite to secondary
- BITS_SHIFT = 0x5,
- BITS_MASK = 0x1F
- };
- voronoi_cell_type* cell_;
- voronoi_vertex_type* vertex_;
- voronoi_edge_type* twin_;
- voronoi_edge_type* next_;
- voronoi_edge_type* prev_;
- mutable color_type color_;
- };
- template <typename T>
- struct voronoi_diagram_traits {
- typedef T coordinate_type;
- typedef voronoi_cell<coordinate_type> cell_type;
- typedef voronoi_vertex<coordinate_type> vertex_type;
- typedef voronoi_edge<coordinate_type> edge_type;
- class vertex_equality_predicate_type {
- public:
- enum { ULPS = 128 };
- bool operator()(const vertex_type& v1, const vertex_type& v2) const {
- return (ulp_cmp(v1.x(), v2.x(), ULPS) ==
- detail::ulp_comparison<T>::EQUAL) &&
- (ulp_cmp(v1.y(), v2.y(), ULPS) ==
- detail::ulp_comparison<T>::EQUAL);
- }
- private:
- typename detail::ulp_comparison<T> ulp_cmp;
- };
- };
- // Voronoi output data structure.
- // CCW ordering is used on the faces perimeter and around the vertices.
- template <typename T, typename TRAITS = voronoi_diagram_traits<T> >
- class voronoi_diagram {
- public:
- typedef typename TRAITS::coordinate_type coordinate_type;
- typedef typename TRAITS::cell_type cell_type;
- typedef typename TRAITS::vertex_type vertex_type;
- typedef typename TRAITS::edge_type edge_type;
- typedef std::vector<cell_type> cell_container_type;
- typedef typename cell_container_type::const_iterator const_cell_iterator;
- typedef std::vector<vertex_type> vertex_container_type;
- typedef typename vertex_container_type::const_iterator const_vertex_iterator;
- typedef std::vector<edge_type> edge_container_type;
- typedef typename edge_container_type::const_iterator const_edge_iterator;
- voronoi_diagram() {}
- void clear() {
- cells_.clear();
- vertices_.clear();
- edges_.clear();
- }
- const cell_container_type& cells() const {
- return cells_;
- }
- const vertex_container_type& vertices() const {
- return vertices_;
- }
- const edge_container_type& edges() const {
- return edges_;
- }
- std::size_t num_cells() const {
- return cells_.size();
- }
- std::size_t num_edges() const {
- return edges_.size();
- }
- std::size_t num_vertices() const {
- return vertices_.size();
- }
- void _reserve(std::size_t num_sites) {
- cells_.reserve(num_sites);
- vertices_.reserve(num_sites << 1);
- edges_.reserve((num_sites << 2) + (num_sites << 1));
- }
- template <typename CT>
- void _process_single_site(const detail::site_event<CT>& site) {
- cells_.push_back(cell_type(site.initial_index(), site.source_category()));
- }
- // Insert a new half-edge into the output data structure.
- // Takes as input left and right sites that form a new bisector.
- // Returns a pair of pointers to a new half-edges.
- template <typename CT>
- std::pair<void*, void*> _insert_new_edge(
- const detail::site_event<CT>& site1,
- const detail::site_event<CT>& site2) {
- // Get sites' indexes.
- std::size_t site_index1 = site1.sorted_index();
- std::size_t site_index2 = site2.sorted_index();
- bool is_linear = is_linear_edge(site1, site2);
- bool is_primary = is_primary_edge(site1, site2);
- // Create a new half-edge that belongs to the first site.
- edges_.push_back(edge_type(is_linear, is_primary));
- edge_type& edge1 = edges_.back();
- // Create a new half-edge that belongs to the second site.
- edges_.push_back(edge_type(is_linear, is_primary));
- edge_type& edge2 = edges_.back();
- // Add the initial cell during the first edge insertion.
- if (cells_.empty()) {
- cells_.push_back(cell_type(
- site1.initial_index(), site1.source_category()));
- }
- // The second site represents a new site during site event
- // processing. Add a new cell to the cell records.
- cells_.push_back(cell_type(
- site2.initial_index(), site2.source_category()));
- // Set up pointers to cells.
- edge1.cell(&cells_[site_index1]);
- edge2.cell(&cells_[site_index2]);
- // Set up twin pointers.
- edge1.twin(&edge2);
- edge2.twin(&edge1);
- // Return a pointer to the new half-edge.
- return std::make_pair(&edge1, &edge2);
- }
- // Insert a new half-edge into the output data structure with the
- // start at the point where two previously added half-edges intersect.
- // Takes as input two sites that create a new bisector, circle event
- // that corresponds to the intersection point of the two old half-edges,
- // pointers to those half-edges. Half-edges' direction goes out of the
- // new Voronoi vertex point. Returns a pair of pointers to a new half-edges.
- template <typename CT1, typename CT2>
- std::pair<void*, void*> _insert_new_edge(
- const detail::site_event<CT1>& site1,
- const detail::site_event<CT1>& site3,
- const detail::circle_event<CT2>& circle,
- void* data12, void* data23) {
- edge_type* edge12 = static_cast<edge_type*>(data12);
- edge_type* edge23 = static_cast<edge_type*>(data23);
- // Add a new Voronoi vertex.
- vertices_.push_back(vertex_type(circle.x(), circle.y()));
- vertex_type& new_vertex = vertices_.back();
- // Update vertex pointers of the old edges.
- edge12->vertex0(&new_vertex);
- edge23->vertex0(&new_vertex);
- bool is_linear = is_linear_edge(site1, site3);
- bool is_primary = is_primary_edge(site1, site3);
- // Add a new half-edge.
- edges_.push_back(edge_type(is_linear, is_primary));
- edge_type& new_edge1 = edges_.back();
- new_edge1.cell(&cells_[site1.sorted_index()]);
- // Add a new half-edge.
- edges_.push_back(edge_type(is_linear, is_primary));
- edge_type& new_edge2 = edges_.back();
- new_edge2.cell(&cells_[site3.sorted_index()]);
- // Update twin pointers.
- new_edge1.twin(&new_edge2);
- new_edge2.twin(&new_edge1);
- // Update vertex pointer.
- new_edge2.vertex0(&new_vertex);
- // Update Voronoi prev/next pointers.
- edge12->prev(&new_edge1);
- new_edge1.next(edge12);
- edge12->twin()->next(edge23);
- edge23->prev(edge12->twin());
- edge23->twin()->next(&new_edge2);
- new_edge2.prev(edge23->twin());
- // Return a pointer to the new half-edge.
- return std::make_pair(&new_edge1, &new_edge2);
- }
- void _build() {
- // Remove degenerate edges.
- edge_iterator last_edge = edges_.begin();
- for (edge_iterator it = edges_.begin(); it != edges_.end(); it += 2) {
- const vertex_type* v1 = it->vertex0();
- const vertex_type* v2 = it->vertex1();
- if (v1 && v2 && vertex_equality_predicate_(*v1, *v2)) {
- remove_edge(&(*it));
- } else {
- if (it != last_edge) {
- edge_type* e1 = &(*last_edge = *it);
- edge_type* e2 = &(*(last_edge + 1) = *(it + 1));
- e1->twin(e2);
- e2->twin(e1);
- if (e1->prev()) {
- e1->prev()->next(e1);
- e2->next()->prev(e2);
- }
- if (e2->prev()) {
- e1->next()->prev(e1);
- e2->prev()->next(e2);
- }
- }
- last_edge += 2;
- }
- }
- edges_.erase(last_edge, edges_.end());
- // Set up incident edge pointers for cells and vertices.
- for (edge_iterator it = edges_.begin(); it != edges_.end(); ++it) {
- it->cell()->incident_edge(&(*it));
- if (it->vertex0()) {
- it->vertex0()->incident_edge(&(*it));
- }
- }
- // Remove degenerate vertices.
- vertex_iterator last_vertex = vertices_.begin();
- for (vertex_iterator it = vertices_.begin(); it != vertices_.end(); ++it) {
- if (it->incident_edge()) {
- if (it != last_vertex) {
- *last_vertex = *it;
- vertex_type* v = &(*last_vertex);
- edge_type* e = v->incident_edge();
- do {
- e->vertex0(v);
- e = e->rot_next();
- } while (e != v->incident_edge());
- }
- ++last_vertex;
- }
- }
- vertices_.erase(last_vertex, vertices_.end());
- // Set up next/prev pointers for infinite edges.
- if (vertices_.empty()) {
- if (!edges_.empty()) {
- // Update prev/next pointers for the line edges.
- edge_iterator edge_it = edges_.begin();
- edge_type* edge1 = &(*edge_it);
- edge1->next(edge1);
- edge1->prev(edge1);
- ++edge_it;
- edge1 = &(*edge_it);
- ++edge_it;
- while (edge_it != edges_.end()) {
- edge_type* edge2 = &(*edge_it);
- ++edge_it;
- edge1->next(edge2);
- edge1->prev(edge2);
- edge2->next(edge1);
- edge2->prev(edge1);
- edge1 = &(*edge_it);
- ++edge_it;
- }
- edge1->next(edge1);
- edge1->prev(edge1);
- }
- } else {
- // Update prev/next pointers for the ray edges.
- for (cell_iterator cell_it = cells_.begin();
- cell_it != cells_.end(); ++cell_it) {
- if (cell_it->is_degenerate())
- continue;
- // Move to the previous edge while
- // it is possible in the CW direction.
- edge_type* left_edge = cell_it->incident_edge();
- while (left_edge->prev() != NULL) {
- left_edge = left_edge->prev();
- // Terminate if this is not a boundary cell.
- if (left_edge == cell_it->incident_edge())
- break;
- }
- if (left_edge->prev() != NULL)
- continue;
- edge_type* right_edge = cell_it->incident_edge();
- while (right_edge->next() != NULL)
- right_edge = right_edge->next();
- left_edge->prev(right_edge);
- right_edge->next(left_edge);
- }
- }
- }
- private:
- typedef typename cell_container_type::iterator cell_iterator;
- typedef typename vertex_container_type::iterator vertex_iterator;
- typedef typename edge_container_type::iterator edge_iterator;
- typedef typename TRAITS::vertex_equality_predicate_type
- vertex_equality_predicate_type;
- template <typename SEvent>
- bool is_primary_edge(const SEvent& site1, const SEvent& site2) const {
- bool flag1 = site1.is_segment();
- bool flag2 = site2.is_segment();
- if (flag1 && !flag2) {
- return (site1.point0() != site2.point0()) &&
- (site1.point1() != site2.point0());
- }
- if (!flag1 && flag2) {
- return (site2.point0() != site1.point0()) &&
- (site2.point1() != site1.point0());
- }
- return true;
- }
- template <typename SEvent>
- bool is_linear_edge(const SEvent& site1, const SEvent& site2) const {
- if (!is_primary_edge(site1, site2)) {
- return true;
- }
- return !(site1.is_segment() ^ site2.is_segment());
- }
- // Remove degenerate edge.
- void remove_edge(edge_type* edge) {
- // Update the endpoints of the incident edges to the second vertex.
- vertex_type* vertex = edge->vertex0();
- edge_type* updated_edge = edge->twin()->rot_next();
- while (updated_edge != edge->twin()) {
- updated_edge->vertex0(vertex);
- updated_edge = updated_edge->rot_next();
- }
- edge_type* edge1 = edge;
- edge_type* edge2 = edge->twin();
- edge_type* edge1_rot_prev = edge1->rot_prev();
- edge_type* edge1_rot_next = edge1->rot_next();
- edge_type* edge2_rot_prev = edge2->rot_prev();
- edge_type* edge2_rot_next = edge2->rot_next();
- // Update prev/next pointers for the incident edges.
- edge1_rot_next->twin()->next(edge2_rot_prev);
- edge2_rot_prev->prev(edge1_rot_next->twin());
- edge1_rot_prev->prev(edge2_rot_next->twin());
- edge2_rot_next->twin()->next(edge1_rot_prev);
- }
- cell_container_type cells_;
- vertex_container_type vertices_;
- edge_container_type edges_;
- vertex_equality_predicate_type vertex_equality_predicate_;
- // Disallow copy constructor and operator=
- voronoi_diagram(const voronoi_diagram&);
- void operator=(const voronoi_diagram&);
- };
- } // polygon
- } // boost
- #endif // BOOST_POLYGON_VORONOI_DIAGRAM
|