123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558 |
- //
- // Copyright (c) 2018-2019, Cem Bassoy, cem.bassoy@gmail.com
- //
- // Distributed under the Boost Software License, Version 1.0. (See
- // accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- //
- // The authors gratefully acknowledge the support of
- // Fraunhofer IOSB, Ettlingen, Germany
- //
- #ifndef BOOST_UBLAS_TENSOR_FUNCTIONS_HPP
- #define BOOST_UBLAS_TENSOR_FUNCTIONS_HPP
- #include <stdexcept>
- #include <vector>
- #include <algorithm>
- #include <numeric>
- #include "multiplication.hpp"
- #include "algorithms.hpp"
- #include "expression.hpp"
- #include "expression_evaluation.hpp"
- #include "storage_traits.hpp"
- namespace boost {
- namespace numeric {
- namespace ublas {
- template<class Value, class Format, class Allocator>
- class tensor;
- template<class Value, class Format, class Allocator>
- class matrix;
- template<class Value, class Allocator>
- class vector;
- /** @brief Computes the m-mode tensor-times-vector product
- *
- * Implements C[i1,...,im-1,im+1,...,ip] = A[i1,i2,...,ip] * b[im]
- *
- * @note calls ublas::ttv
- *
- * @param[in] m contraction dimension with 1 <= m <= p
- * @param[in] a tensor object A with order p
- * @param[in] b vector object B
- *
- * @returns tensor object C with order p-1, the same storage format and allocator type as A
- */
- template<class V, class F, class A1, class A2>
- auto prod(tensor<V,F,A1> const& a, vector<V,A2> const& b, const std::size_t m)
- {
- using tensor_type = tensor<V,F,A1>;
- using extents_type = typename tensor_type::extents_type;
- using ebase_type = typename extents_type::base_type;
- using value_type = typename tensor_type::value_type;
- using size_type = typename extents_type::value_type;
- auto const p = std::size_t(a.rank());
-
- if( m == 0)
- throw std::length_error("error in boost::numeric::ublas::prod(ttv): contraction mode must be greater than zero.");
- if( p < m )
- throw std::length_error("error in boost::numeric::ublas::prod(ttv): rank of tensor must be greater than or equal to the modus.");
- if( p == 0)
- throw std::length_error("error in boost::numeric::ublas::prod(ttv): rank of tensor must be greater than zero.");
- if( a.empty() )
- throw std::length_error("error in boost::numeric::ublas::prod(ttv): first argument tensor should not be empty.");
- if( b.size() == 0)
- throw std::length_error("error in boost::numeric::ublas::prod(ttv): second argument vector should not be empty.");
- auto nc = ebase_type(std::max(p-1, size_type(2)) , size_type(1));
- auto nb = ebase_type{b.size(),1};
- for(auto i = 0u, j = 0u; i < p; ++i)
- if(i != m-1)
- nc[j++] = a.extents().at(i);
- auto c = tensor_type(extents_type(nc),value_type{});
- auto bb = &(b(0));
- ttv(m, p,
- c.data(), c.extents().data(), c.strides().data(),
- a.data(), a.extents().data(), a.strides().data(),
- bb, nb.data(), nb.data());
- return c;
- }
- /** @brief Computes the m-mode tensor-times-matrix product
- *
- * Implements C[i1,...,im-1,j,im+1,...,ip] = A[i1,i2,...,ip] * B[j,im]
- *
- * @note calls ublas::ttm
- *
- * @param[in] a tensor object A with order p
- * @param[in] b vector object B
- * @param[in] m contraction dimension with 1 <= m <= p
- *
- * @returns tensor object C with order p, the same storage format and allocator type as A
- */
- template<class V, class F, class A1, class A2>
- auto prod(tensor<V,F,A1> const& a, matrix<V,F,A2> const& b, const std::size_t m)
- {
- using tensor_type = tensor<V,F,A1>;
- using extents_type = typename tensor_type::extents_type;
- using strides_type = typename tensor_type::strides_type;
- using value_type = typename tensor_type::value_type;
- auto const p = a.rank();
- if( m == 0)
- throw std::length_error("error in boost::numeric::ublas::prod(ttm): contraction mode must be greater than zero.");
- if( p < m || m > a.extents().size())
- throw std::length_error("error in boost::numeric::ublas::prod(ttm): rank of the tensor must be greater equal the modus.");
- if( p == 0)
- throw std::length_error("error in boost::numeric::ublas::prod(ttm): rank of the tensor must be greater than zero.");
- if( a.empty() )
- throw std::length_error("error in boost::numeric::ublas::prod(ttm): first argument tensor should not be empty.");
- if( b.size1()*b.size2() == 0)
- throw std::length_error("error in boost::numeric::ublas::prod(ttm): second argument matrix should not be empty.");
- auto nc = a.extents().base();
- auto nb = extents_type {b.size1(),b.size2()};
- auto wb = strides_type (nb);
- nc[m-1] = nb[0];
- auto c = tensor_type(extents_type(nc),value_type{});
- auto bb = &(b(0,0));
- ttm(m, p,
- c.data(), c.extents().data(), c.strides().data(),
- a.data(), a.extents().data(), a.strides().data(),
- bb, nb.data(), wb.data());
- return c;
- }
- /** @brief Computes the q-mode tensor-times-tensor product
- *
- * Implements C[i1,...,ir,j1,...,js] = sum( A[i1,...,ir+q] * B[j1,...,js+q] )
- *
- * @note calls ublas::ttt
- *
- * na[phia[x]] = nb[phib[x]] for 1 <= x <= q
- *
- * @param[in] phia one-based permutation tuple of length q for the first input tensor a
- * @param[in] phib one-based permutation tuple of length q for the second input tensor b
- * @param[in] a left-hand side tensor with order r+q
- * @param[in] b right-hand side tensor with order s+q
- * @result tensor with order r+s
- */
- template<class V, class F, class A1, class A2>
- auto prod(tensor<V,F,A1> const& a, tensor<V,F,A2> const& b,
- std::vector<std::size_t> const& phia, std::vector<std::size_t> const& phib)
- {
- using tensor_type = tensor<V,F,A1>;
- using extents_type = typename tensor_type::extents_type;
- using value_type = typename tensor_type::value_type;
- using size_type = typename extents_type::value_type;
- auto const pa = a.rank();
- auto const pb = b.rank();
- auto const q = size_type(phia.size());
- if(pa == 0ul)
- throw std::runtime_error("error in ublas::prod: order of left-hand side tensor must be greater than 0.");
- if(pb == 0ul)
- throw std::runtime_error("error in ublas::prod: order of right-hand side tensor must be greater than 0.");
- if(pa < q)
- throw std::runtime_error("error in ublas::prod: number of contraction dimensions cannot be greater than the order of the left-hand side tensor.");
- if(pb < q)
- throw std::runtime_error("error in ublas::prod: number of contraction dimensions cannot be greater than the order of the right-hand side tensor.");
- if(q != phib.size())
- throw std::runtime_error("error in ublas::prod: permutation tuples must have the same length.");
- if(pa < phia.size())
- throw std::runtime_error("error in ublas::prod: permutation tuple for the left-hand side tensor cannot be greater than the corresponding order.");
- if(pb < phib.size())
- throw std::runtime_error("error in ublas::prod: permutation tuple for the right-hand side tensor cannot be greater than the corresponding order.");
- auto const& na = a.extents();
- auto const& nb = b.extents();
- for(auto i = 0ul; i < q; ++i)
- if( na.at(phia.at(i)-1) != nb.at(phib.at(i)-1))
- throw std::runtime_error("error in ublas::prod: permutations of the extents are not correct.");
- auto const r = pa - q;
- auto const s = pb - q;
- std::vector<std::size_t> phia1(pa), phib1(pb);
- std::iota(phia1.begin(), phia1.end(), 1ul);
- std::iota(phib1.begin(), phib1.end(), 1ul);
- std::vector<std::size_t> nc( std::max ( r+s , size_type(2) ), size_type(1) );
- for(auto i = 0ul; i < phia.size(); ++i)
- * std::remove(phia1.begin(), phia1.end(), phia.at(i)) = phia.at(i);
- //phia1.erase( std::remove(phia1.begin(), phia1.end(), phia.at(i)), phia1.end() ) ;
- assert(phia1.size() == pa);
- for(auto i = 0ul; i < r; ++i)
- nc[ i ] = na[ phia1[ i ] - 1 ];
- for(auto i = 0ul; i < phib.size(); ++i)
- * std::remove(phib1.begin(), phib1.end(), phib.at(i)) = phib.at(i) ;
- //phib1.erase( std::remove(phib1.begin(), phib1.end(), phia.at(i)), phib1.end() ) ;
- assert(phib1.size() == pb);
- for(auto i = 0ul; i < s; ++i)
- nc[ r + i ] = nb[ phib1[ i ] - 1 ];
- // std::copy( phib.begin(), phib.end(), phib1.end() );
- assert( phia1.size() == pa );
- assert( phib1.size() == pb );
- auto c = tensor_type(extents_type(nc), value_type{});
- ttt(pa, pb, q,
- phia1.data(), phib1.data(),
- c.data(), c.extents().data(), c.strides().data(),
- a.data(), a.extents().data(), a.strides().data(),
- b.data(), b.extents().data(), b.strides().data());
- return c;
- }
- //template<class V, class F, class A1, class A2, std::size_t N, std::size_t M>
- //auto operator*( tensor_index<V,F,A1,N> const& lhs, tensor_index<V,F,A2,M> const& rhs)
- /** @brief Computes the q-mode tensor-times-tensor product
- *
- * Implements C[i1,...,ir,j1,...,js] = sum( A[i1,...,ir+q] * B[j1,...,js+q] )
- *
- * @note calls ublas::ttt
- *
- * na[phi[x]] = nb[phi[x]] for 1 <= x <= q
- *
- * @param[in] phi one-based permutation tuple of length q for bot input tensors
- * @param[in] a left-hand side tensor with order r+q
- * @param[in] b right-hand side tensor with order s+q
- * @result tensor with order r+s
- */
- template<class V, class F, class A1, class A2>
- auto prod(tensor<V,F,A1> const& a, tensor<V,F,A2> const& b,
- std::vector<std::size_t> const& phi)
- {
- return prod(a, b, phi, phi);
- }
- /** @brief Computes the inner product of two tensors
- *
- * Implements c = sum(A[i1,i2,...,ip] * B[i1,i2,...,jp])
- *
- * @note calls inner function
- *
- * @param[in] a tensor object A
- * @param[in] b tensor object B
- *
- * @returns a value type.
- */
- template<class V, class F, class A1, class A2>
- auto inner_prod(tensor<V,F,A1> const& a, tensor<V,F,A2> const& b)
- {
- using value_type = typename tensor<V,F,A1>::value_type;
- if( a.rank() != b.rank() )
- throw std::length_error("error in boost::numeric::ublas::inner_prod: Rank of both tensors must be the same.");
- if( a.empty() || b.empty())
- throw std::length_error("error in boost::numeric::ublas::inner_prod: Tensors should not be empty.");
- if( a.extents() != b.extents())
- throw std::length_error("error in boost::numeric::ublas::inner_prod: Tensor extents should be the same.");
- return inner(a.rank(), a.extents().data(),
- a.data(), a.strides().data(),
- b.data(), b.strides().data(), value_type{0});
- }
- /** @brief Computes the outer product of two tensors
- *
- * Implements C[i1,...,ip,j1,...,jq] = A[i1,i2,...,ip] * B[j1,j2,...,jq]
- *
- * @note calls outer function
- *
- * @param[in] a tensor object A
- * @param[in] b tensor object B
- *
- * @returns tensor object C with the same storage format F and allocator type A1
- */
- template<class V, class F, class A1, class A2>
- auto outer_prod(tensor<V,F,A1> const& a, tensor<V,F,A2> const& b)
- {
- using tensor_type = tensor<V,F,A1>;
- using extents_type = typename tensor_type::extents_type;
- if( a.empty() || b.empty() )
- throw std::runtime_error("error in boost::numeric::ublas::outer_prod: tensors should not be empty.");
- auto nc = typename extents_type::base_type(a.rank() + b.rank());
- for(auto i = 0u; i < a.rank(); ++i)
- nc.at(i) = a.extents().at(i);
- for(auto i = 0u; i < b.rank(); ++i)
- nc.at(a.rank()+i) = b.extents().at(i);
- auto c = tensor_type(extents_type(nc));
- outer(c.data(), c.rank(), c.extents().data(), c.strides().data(),
- a.data(), a.rank(), a.extents().data(), a.strides().data(),
- b.data(), b.rank(), b.extents().data(), b.strides().data());
- return c;
- }
- /** @brief Transposes a tensor according to a permutation tuple
- *
- * Implements C[tau[i1],tau[i2]...,tau[ip]] = A[i1,i2,...,ip]
- *
- * @note calls trans function
- *
- * @param[in] a tensor object of rank p
- * @param[in] tau one-based permutation tuple of length p
- * @returns a transposed tensor object with the same storage format F and allocator type A
- */
- template<class V, class F, class A>
- auto trans(tensor<V,F,A> const& a, std::vector<std::size_t> const& tau)
- {
- using tensor_type = tensor<V,F,A>;
- using extents_type = typename tensor_type::extents_type;
- // using strides_type = typename tensor_type::strides_type;
- if( a.empty() )
- return tensor<V,F,A>{};
- auto const p = a.rank();
- auto const& na = a.extents();
- auto nc = typename extents_type::base_type (p);
- for(auto i = 0u; i < p; ++i)
- nc.at(tau.at(i)-1) = na.at(i);
- // auto wc = strides_type(extents_type(nc));
- auto c = tensor_type(extents_type(nc));
- trans( a.rank(), a.extents().data(), tau.data(),
- c.data(), c.strides().data(),
- a.data(), a.strides().data());
- // auto wc_pi = typename strides_type::base_type (p);
- // for(auto i = 0u; i < p; ++i)
- // wc_pi.at(tau.at(i)-1) = c.strides().at(i);
- //copy(a.rank(),
- // a.extents().data(),
- // c.data(), wc_pi.data(),
- // a.data(), a.strides().data() );
- return c;
- }
- /** @brief Computes the frobenius norm of a tensor expression
- *
- * @note evaluates the tensor expression and calls the accumulate function
- *
- *
- * Implements the two-norm with
- * k = sqrt( sum_(i1,...,ip) A(i1,...,ip)^2 )
- *
- * @param[in] a tensor object of rank p
- * @returns the frobenius norm of the tensor
- */
- //template<class V, class F, class A>
- //auto norm(tensor<V,F,A> const& a)
- template<class T, class D>
- auto norm(detail::tensor_expression<T,D> const& expr)
- {
- using tensor_type = typename detail::tensor_expression<T,D>::tensor_type;
- using value_type = typename tensor_type::value_type;
- auto a = tensor_type( expr );
- if( a.empty() )
- throw std::runtime_error("error in boost::numeric::ublas::norm: tensors should not be empty.");
- return std::sqrt( accumulate( a.order(), a.extents().data(), a.data(), a.strides().data(), value_type{},
- [](auto const& l, auto const& r){ return l + r*r; } ) ) ;
- }
- /** @brief Extract the real component of tensor elements within a tensor expression
- *
- * @param[in] lhs tensor expression
- * @returns unary tensor expression
- */
- template<class T, class D>
- auto real(detail::tensor_expression<T,D> const& expr) {
- return detail::make_unary_tensor_expression<T> (expr(), [] (auto const& l) { return std::real( l ); } );
- }
- /** @brief Extract the real component of tensor elements within a tensor expression
- *
- * @param[in] lhs tensor expression
- * @returns unary tensor expression
- */
- template<class V, class F, class A, class D>
- auto real(detail::tensor_expression<tensor<std::complex<V>,F,A>,D> const& expr)
- {
- using tensor_complex_type = tensor<std::complex<V>,F,A>;
- using tensor_type = tensor<V,F,typename storage_traits<A>::template rebind<V>>;
- if( detail::retrieve_extents( expr ).empty() )
- throw std::runtime_error("error in boost::numeric::ublas::real: tensors should not be empty.");
- auto a = tensor_complex_type( expr );
- auto c = tensor_type( a.extents() );
- std::transform( a.begin(), a.end(), c.begin(), [](auto const& l){ return std::real(l) ; } );
- return c;
- }
- /** @brief Extract the imaginary component of tensor elements within a tensor expression
- *
- * @param[in] lhs tensor expression
- * @returns unary tensor expression
- */
- template<class T, class D>
- auto imag(detail::tensor_expression<T,D> const& lhs) {
- return detail::make_unary_tensor_expression<T> (lhs(), [] (auto const& l) { return std::imag( l ); } );
- }
- /** @brief Extract the imag component of tensor elements within a tensor expression
- *
- * @param[in] lhs tensor expression
- * @returns unary tensor expression
- */
- template<class V, class A, class F, class D>
- auto imag(detail::tensor_expression<tensor<std::complex<V>,F,A>,D> const& expr)
- {
- using tensor_complex_type = tensor<std::complex<V>,F,A>;
- using tensor_type = tensor<V,F,typename storage_traits<A>::template rebind<V>>;
- if( detail::retrieve_extents( expr ).empty() )
- throw std::runtime_error("error in boost::numeric::ublas::real: tensors should not be empty.");
- auto a = tensor_complex_type( expr );
- auto c = tensor_type( a.extents() );
- std::transform( a.begin(), a.end(), c.begin(), [](auto const& l){ return std::imag(l) ; } );
- return c;
- }
- /** @brief Computes the complex conjugate component of tensor elements within a tensor expression
- *
- * @param[in] expr tensor expression
- * @returns complex tensor
- */
- template<class T, class D>
- auto conj(detail::tensor_expression<T,D> const& expr)
- {
- using tensor_type = T;
- using value_type = typename tensor_type::value_type;
- using layout_type = typename tensor_type::layout_type;
- using array_type = typename tensor_type::array_type;
- using new_value_type = std::complex<value_type>;
- using new_array_type = typename storage_traits<array_type>::template rebind<new_value_type>;
- using tensor_complex_type = tensor<new_value_type,layout_type, new_array_type>;
- if( detail::retrieve_extents( expr ).empty() )
- throw std::runtime_error("error in boost::numeric::ublas::conj: tensors should not be empty.");
- auto a = tensor_type( expr );
- auto c = tensor_complex_type( a.extents() );
- std::transform( a.begin(), a.end(), c.begin(), [](auto const& l){ return std::conj(l) ; } );
- return c;
- }
- /** @brief Computes the complex conjugate component of tensor elements within a tensor expression
- *
- * @param[in] lhs tensor expression
- * @returns unary tensor expression
- */
- template<class V, class A, class F, class D>
- auto conj(detail::tensor_expression<tensor<std::complex<V>,F,A>,D> const& expr)
- {
- return detail::make_unary_tensor_expression<tensor<std::complex<V>,F,A>> (expr(), [] (auto const& l) { return std::conj( l ); } );
- }
- }
- }
- }
- #endif
|