123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- /*!
- @file
- Defines `boost::hana::demux`.
- @copyright Louis Dionne 2013-2017
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_HANA_FUNCTIONAL_DEMUX_HPP
- #define BOOST_HANA_FUNCTIONAL_DEMUX_HPP
- #include <boost/hana/basic_tuple.hpp>
- #include <boost/hana/config.hpp>
- #include <boost/hana/detail/decay.hpp>
- #include <cstddef>
- #include <utility>
- BOOST_HANA_NAMESPACE_BEGIN
- //! @ingroup group-functional
- //! Invoke a function with the results of invoking other functions
- //! on its arguments.
- //!
- //! Specifically, `demux(f)(g...)` is a function such that
- //! @code
- //! demux(f)(g...)(x...) == f(g(x...)...)
- //! @endcode
- //!
- //! Each `g` is called with all the arguments, and then `f` is called
- //! with the result of each `g`. Hence, the arity of `f` must match
- //! the number of `g`s.
- //!
- //! This is called `demux` because of a vague similarity between this
- //! device and a demultiplexer in signal processing. `demux` takes what
- //! can be seen as a continuation (`f`), a bunch of functions to split a
- //! signal (`g...`) and zero or more arguments representing the signal
- //! (`x...`). Then, it calls the continuation with the result of
- //! splitting the signal with whatever functions where given.
- //!
- //! @note
- //! When used with two functions only, `demux` is associative. In other
- //! words (and noting `demux(f, g) = demux(f)(g)` to ease the notation),
- //! it is true that `demux(demux(f, g), h) == demux(f, demux(g, h))`.
- //!
- //!
- //! Signature
- //! ---------
- //! The signature of `demux` is
- //! \f[
- //! \mathtt{demux} :
- //! (B_1 \times \dotsb \times B_n \to C)
- //! \to ((A_1 \times \dotsb \times A_n \to B_1)
- //! \times \dotsb
- //! \times (A_1 \times \dotsb \times A_n \to B_n))
- //! \to (A_1 \times \dotsb \times A_n \to C)
- //! \f]
- //!
- //! This can be rewritten more tersely as
- //! \f[
- //! \mathtt{demux} :
- //! \left(\prod_{i=1}^n B_i \to C \right)
- //! \to \prod_{j=1}^n \left(\prod_{i=1}^n A_i \to B_j \right)
- //! \to \left(\prod_{i=1}^n A_i \to C \right)
- //! \f]
- //!
- //!
- //! Link with normal composition
- //! ----------------------------
- //! The signature of `compose` is
- //! \f[
- //! \mathtt{compose} : (B \to C) \times (A \to B) \to (A \to C)
- //! \f]
- //!
- //! A valid observation is that this coincides exactly with the type
- //! of `demux` when used with a single unary function. Actually, both
- //! functions are equivalent:
- //! @code
- //! demux(f)(g)(x) == compose(f, g)(x)
- //! @endcode
- //!
- //! However, let's now consider the curried version of `compose`,
- //! `curry<2>(compose)`:
- //! \f[
- //! \mathtt{curry_2(compose)} : (B \to C) \to ((A \to B) \to (A \to C))
- //! \f]
- //!
- //! For the rest of this explanation, we'll just consider the curried
- //! version of `compose` and so we'll use `compose` instead of
- //! `curry<2>(compose)` to lighten the notation. With currying, we can
- //! now consider `compose` applied to itself:
- //! \f[
- //! \mathtt{compose(compose, compose)} :
- //! (B \to C) \to (A_1 \to A_2 \to B) \to (A_1 \to A_2 \to C)
- //! \f]
- //!
- //! If we uncurry deeply the above expression, we obtain
- //! \f[
- //! \mathtt{compose(compose, compose)} :
- //! (B \to C) \times (A_1 \times A_2 \to B) \to (A_1 \times A_2 \to C)
- //! \f]
- //!
- //! This signature is exactly the same as that of `demux` when given a
- //! single binary function, and indeed they are equivalent definitions.
- //! We can also generalize this further by considering
- //! `compose(compose(compose, compose), compose)`:
- //! \f[
- //! \mathtt{compose(compose(compose, compose), compose)} :
- //! (B \to C) \to (A_1 \to A_2 \to A_3 \to B)
- //! \to (A_1 \to A_2 \to A_3 \to C)
- //! \f]
- //!
- //! which uncurries to
- //! \f[
- //! \mathtt{compose(compose(compose, compose), compose)} :
- //! (B \to C) \times (A_1 \times A_2 \times A_3 \to B)
- //! \to (A_1 \times A_2 \times A_3 \to C)
- //! \f]
- //!
- //! This signature is exactly the same as that of `demux` when given a
- //! single ternary function. Hence, for a single n-ary function `g`,
- //! `demux(f)(g)` is equivalent to the n-times composition of `compose`
- //! with itself, applied to `g` and `f`:
- //! @code
- //! demux(f)(g) == fold_left([compose, ..., compose], id, compose)(g, f)
- //! // ^^^^^^^^^^^^^^^^^^^^^ n times
- //! @endcode
- //!
- //! More information on this insight can be seen [here][1]. Also, I'm
- //! not sure how this insight could be generalized to more than one
- //! function `g`, or if that is even possible.
- //!
- //!
- //! Proof of associativity in the binary case
- //! -----------------------------------------
- //! As explained above, `demux` is associative when it is used with
- //! two functions only. Indeed, given functions `f`, `g` and `h` with
- //! suitable signatures, we have
- //! @code
- //! demux(f)(demux(g)(h))(x...) == f(demux(g)(h)(x...))
- //! == f(g(h(x...)))
- //! @endcode
- //!
- //! On the other hand, we have
- //! @code
- //! demux(demux(f)(g))(h)(x...) == demux(f)(g)(h(x...))
- //! == f(g(h(x...)))
- //! @endcode
- //!
- //! and hence `demux` is associative in the binary case.
- //!
- //!
- //! Example
- //! -------
- //! @include example/functional/demux.cpp
- //!
- //! [1]: http://stackoverflow.com/q/5821089/627587
- #ifdef BOOST_HANA_DOXYGEN_INVOKED
- constexpr auto demux = [](auto&& f) {
- return [perfect-capture](auto&& ...g) {
- return [perfect-capture](auto&& ...x) -> decltype(auto) {
- // x... can't be forwarded unless there is a single g
- // function, or that could cause double-moves.
- return forwarded(f)(forwarded(g)(x...)...);
- };
- };
- };
- #else
- template <typename F>
- struct pre_demux_t;
- struct make_pre_demux_t {
- struct secret { };
- template <typename F>
- constexpr pre_demux_t<typename detail::decay<F>::type> operator()(F&& f) const {
- return {static_cast<F&&>(f)};
- }
- };
- template <typename Indices, typename F, typename ...G>
- struct demux_t;
- template <typename F>
- struct pre_demux_t {
- F f;
- template <typename ...G>
- constexpr demux_t<std::make_index_sequence<sizeof...(G)>, F,
- typename detail::decay<G>::type...>
- operator()(G&& ...g) const& {
- return {make_pre_demux_t::secret{}, this->f, static_cast<G&&>(g)...};
- }
- template <typename ...G>
- constexpr demux_t<std::make_index_sequence<sizeof...(G)>, F,
- typename detail::decay<G>::type...>
- operator()(G&& ...g) && {
- return {make_pre_demux_t::secret{}, static_cast<F&&>(this->f), static_cast<G&&>(g)...};
- }
- };
- template <std::size_t ...n, typename F, typename ...G>
- struct demux_t<std::index_sequence<n...>, F, G...> {
- template <typename ...T>
- constexpr demux_t(make_pre_demux_t::secret, T&& ...t)
- : storage_{static_cast<T&&>(t)...}
- { }
- basic_tuple<F, G...> storage_;
- template <typename ...X>
- constexpr decltype(auto) operator()(X&& ...x) const& {
- return hana::at_c<0>(storage_)(
- hana::at_c<n+1>(storage_)(x...)...
- );
- }
- template <typename ...X>
- constexpr decltype(auto) operator()(X&& ...x) & {
- return hana::at_c<0>(storage_)(
- hana::at_c<n+1>(storage_)(x...)...
- );
- }
- template <typename ...X>
- constexpr decltype(auto) operator()(X&& ...x) && {
- return static_cast<F&&>(hana::at_c<0>(storage_))(
- static_cast<G&&>(hana::at_c<n+1>(storage_))(x...)...
- );
- }
- };
- template <typename F, typename G>
- struct demux_t<std::index_sequence<0>, F, G> {
- template <typename ...T>
- constexpr demux_t(make_pre_demux_t::secret, T&& ...t)
- : storage_{static_cast<T&&>(t)...}
- { }
- basic_tuple<F, G> storage_;
- template <typename ...X>
- constexpr decltype(auto) operator()(X&& ...x) const& {
- return hana::at_c<0>(storage_)(
- hana::at_c<1>(storage_)(static_cast<X&&>(x)...)
- );
- }
- template <typename ...X>
- constexpr decltype(auto) operator()(X&& ...x) & {
- return hana::at_c<0>(storage_)(
- hana::at_c<1>(storage_)(static_cast<X&&>(x)...)
- );
- }
- template <typename ...X>
- constexpr decltype(auto) operator()(X&& ...x) && {
- return static_cast<F&&>(hana::at_c<0>(storage_))(
- static_cast<G&&>(hana::at_c<1>(storage_))(static_cast<X&&>(x)...)
- );
- }
- };
- constexpr make_pre_demux_t demux{};
- #endif
- BOOST_HANA_NAMESPACE_END
- #endif // !BOOST_HANA_FUNCTIONAL_DEMUX_HPP
|