123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440 |
- // © 2018 and later: Unicode, Inc. and others.
- // License & terms of use: http://www.unicode.org/copyright.html
- //
- // From the double-conversion library. Original license:
- //
- // Copyright 2012 the V8 project authors. All rights reserved.
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following
- // disclaimer in the documentation and/or other materials provided
- // with the distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
- #include "unicode/utypes.h"
- #if !UCONFIG_NO_FORMATTING
- #ifndef DOUBLE_CONVERSION_DOUBLE_H_
- #define DOUBLE_CONVERSION_DOUBLE_H_
- // ICU PATCH: Customize header file paths for ICU.
- #include "double-conversion-diy-fp.h"
- // ICU PATCH: Wrap in ICU namespace
- U_NAMESPACE_BEGIN
- namespace double_conversion {
- // We assume that doubles and uint64_t have the same endianness.
- static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
- static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
- static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
- static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
- // Helper functions for doubles.
- class Double {
- public:
- static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000);
- static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
- static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
- static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000);
- static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000);
- static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
- static const int kSignificandSize = 53;
- static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
- static const int kMaxExponent = 0x7FF - kExponentBias;
- Double() : d64_(0) {}
- explicit Double(double d) : d64_(double_to_uint64(d)) {}
- explicit Double(uint64_t d64) : d64_(d64) {}
- explicit Double(DiyFp diy_fp)
- : d64_(DiyFpToUint64(diy_fp)) {}
- // The value encoded by this Double must be greater or equal to +0.0.
- // It must not be special (infinity, or NaN).
- DiyFp AsDiyFp() const {
- DOUBLE_CONVERSION_ASSERT(Sign() > 0);
- DOUBLE_CONVERSION_ASSERT(!IsSpecial());
- return DiyFp(Significand(), Exponent());
- }
- // The value encoded by this Double must be strictly greater than 0.
- DiyFp AsNormalizedDiyFp() const {
- DOUBLE_CONVERSION_ASSERT(value() > 0.0);
- uint64_t f = Significand();
- int e = Exponent();
- // The current double could be a denormal.
- while ((f & kHiddenBit) == 0) {
- f <<= 1;
- e--;
- }
- // Do the final shifts in one go.
- f <<= DiyFp::kSignificandSize - kSignificandSize;
- e -= DiyFp::kSignificandSize - kSignificandSize;
- return DiyFp(f, e);
- }
- // Returns the double's bit as uint64.
- uint64_t AsUint64() const {
- return d64_;
- }
- // Returns the next greater double. Returns +infinity on input +infinity.
- double NextDouble() const {
- if (d64_ == kInfinity) return Double(kInfinity).value();
- if (Sign() < 0 && Significand() == 0) {
- // -0.0
- return 0.0;
- }
- if (Sign() < 0) {
- return Double(d64_ - 1).value();
- } else {
- return Double(d64_ + 1).value();
- }
- }
- double PreviousDouble() const {
- if (d64_ == (kInfinity | kSignMask)) return -Infinity();
- if (Sign() < 0) {
- return Double(d64_ + 1).value();
- } else {
- if (Significand() == 0) return -0.0;
- return Double(d64_ - 1).value();
- }
- }
- int Exponent() const {
- if (IsDenormal()) return kDenormalExponent;
- uint64_t d64 = AsUint64();
- int biased_e =
- static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
- return biased_e - kExponentBias;
- }
- uint64_t Significand() const {
- uint64_t d64 = AsUint64();
- uint64_t significand = d64 & kSignificandMask;
- if (!IsDenormal()) {
- return significand + kHiddenBit;
- } else {
- return significand;
- }
- }
- // Returns true if the double is a denormal.
- bool IsDenormal() const {
- uint64_t d64 = AsUint64();
- return (d64 & kExponentMask) == 0;
- }
- // We consider denormals not to be special.
- // Hence only Infinity and NaN are special.
- bool IsSpecial() const {
- uint64_t d64 = AsUint64();
- return (d64 & kExponentMask) == kExponentMask;
- }
- bool IsNan() const {
- uint64_t d64 = AsUint64();
- return ((d64 & kExponentMask) == kExponentMask) &&
- ((d64 & kSignificandMask) != 0);
- }
- bool IsQuietNan() const {
- return IsNan() && ((AsUint64() & kQuietNanBit) != 0);
- }
- bool IsSignalingNan() const {
- return IsNan() && ((AsUint64() & kQuietNanBit) == 0);
- }
- bool IsInfinite() const {
- uint64_t d64 = AsUint64();
- return ((d64 & kExponentMask) == kExponentMask) &&
- ((d64 & kSignificandMask) == 0);
- }
- int Sign() const {
- uint64_t d64 = AsUint64();
- return (d64 & kSignMask) == 0? 1: -1;
- }
- // Precondition: the value encoded by this Double must be greater or equal
- // than +0.0.
- DiyFp UpperBoundary() const {
- DOUBLE_CONVERSION_ASSERT(Sign() > 0);
- return DiyFp(Significand() * 2 + 1, Exponent() - 1);
- }
- // Computes the two boundaries of this.
- // The bigger boundary (m_plus) is normalized. The lower boundary has the same
- // exponent as m_plus.
- // Precondition: the value encoded by this Double must be greater than 0.
- void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
- DOUBLE_CONVERSION_ASSERT(value() > 0.0);
- DiyFp v = this->AsDiyFp();
- DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
- DiyFp m_minus;
- if (LowerBoundaryIsCloser()) {
- m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
- } else {
- m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
- }
- m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
- m_minus.set_e(m_plus.e());
- *out_m_plus = m_plus;
- *out_m_minus = m_minus;
- }
- bool LowerBoundaryIsCloser() const {
- // The boundary is closer if the significand is of the form f == 2^p-1 then
- // the lower boundary is closer.
- // Think of v = 1000e10 and v- = 9999e9.
- // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
- // at a distance of 1e8.
- // The only exception is for the smallest normal: the largest denormal is
- // at the same distance as its successor.
- // Note: denormals have the same exponent as the smallest normals.
- bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
- return physical_significand_is_zero && (Exponent() != kDenormalExponent);
- }
- double value() const { return uint64_to_double(d64_); }
- // Returns the significand size for a given order of magnitude.
- // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
- // This function returns the number of significant binary digits v will have
- // once it's encoded into a double. In almost all cases this is equal to
- // kSignificandSize. The only exceptions are denormals. They start with
- // leading zeroes and their effective significand-size is hence smaller.
- static int SignificandSizeForOrderOfMagnitude(int order) {
- if (order >= (kDenormalExponent + kSignificandSize)) {
- return kSignificandSize;
- }
- if (order <= kDenormalExponent) return 0;
- return order - kDenormalExponent;
- }
- static double Infinity() {
- return Double(kInfinity).value();
- }
- static double NaN() {
- return Double(kNaN).value();
- }
- private:
- static const int kDenormalExponent = -kExponentBias + 1;
- static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
- static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000);
- const uint64_t d64_;
- static uint64_t DiyFpToUint64(DiyFp diy_fp) {
- uint64_t significand = diy_fp.f();
- int exponent = diy_fp.e();
- while (significand > kHiddenBit + kSignificandMask) {
- significand >>= 1;
- exponent++;
- }
- if (exponent >= kMaxExponent) {
- return kInfinity;
- }
- if (exponent < kDenormalExponent) {
- return 0;
- }
- while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
- significand <<= 1;
- exponent--;
- }
- uint64_t biased_exponent;
- if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
- biased_exponent = 0;
- } else {
- biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
- }
- return (significand & kSignificandMask) |
- (biased_exponent << kPhysicalSignificandSize);
- }
- DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double);
- };
- class Single {
- public:
- static const uint32_t kSignMask = 0x80000000;
- static const uint32_t kExponentMask = 0x7F800000;
- static const uint32_t kSignificandMask = 0x007FFFFF;
- static const uint32_t kHiddenBit = 0x00800000;
- static const uint32_t kQuietNanBit = 0x00400000;
- static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit.
- static const int kSignificandSize = 24;
- Single() : d32_(0) {}
- explicit Single(float f) : d32_(float_to_uint32(f)) {}
- explicit Single(uint32_t d32) : d32_(d32) {}
- // The value encoded by this Single must be greater or equal to +0.0.
- // It must not be special (infinity, or NaN).
- DiyFp AsDiyFp() const {
- DOUBLE_CONVERSION_ASSERT(Sign() > 0);
- DOUBLE_CONVERSION_ASSERT(!IsSpecial());
- return DiyFp(Significand(), Exponent());
- }
- // Returns the single's bit as uint64.
- uint32_t AsUint32() const {
- return d32_;
- }
- int Exponent() const {
- if (IsDenormal()) return kDenormalExponent;
- uint32_t d32 = AsUint32();
- int biased_e =
- static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
- return biased_e - kExponentBias;
- }
- uint32_t Significand() const {
- uint32_t d32 = AsUint32();
- uint32_t significand = d32 & kSignificandMask;
- if (!IsDenormal()) {
- return significand + kHiddenBit;
- } else {
- return significand;
- }
- }
- // Returns true if the single is a denormal.
- bool IsDenormal() const {
- uint32_t d32 = AsUint32();
- return (d32 & kExponentMask) == 0;
- }
- // We consider denormals not to be special.
- // Hence only Infinity and NaN are special.
- bool IsSpecial() const {
- uint32_t d32 = AsUint32();
- return (d32 & kExponentMask) == kExponentMask;
- }
- bool IsNan() const {
- uint32_t d32 = AsUint32();
- return ((d32 & kExponentMask) == kExponentMask) &&
- ((d32 & kSignificandMask) != 0);
- }
- bool IsQuietNan() const {
- return IsNan() && ((AsUint32() & kQuietNanBit) != 0);
- }
- bool IsSignalingNan() const {
- return IsNan() && ((AsUint32() & kQuietNanBit) == 0);
- }
- bool IsInfinite() const {
- uint32_t d32 = AsUint32();
- return ((d32 & kExponentMask) == kExponentMask) &&
- ((d32 & kSignificandMask) == 0);
- }
- int Sign() const {
- uint32_t d32 = AsUint32();
- return (d32 & kSignMask) == 0? 1: -1;
- }
- // Computes the two boundaries of this.
- // The bigger boundary (m_plus) is normalized. The lower boundary has the same
- // exponent as m_plus.
- // Precondition: the value encoded by this Single must be greater than 0.
- void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
- DOUBLE_CONVERSION_ASSERT(value() > 0.0);
- DiyFp v = this->AsDiyFp();
- DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
- DiyFp m_minus;
- if (LowerBoundaryIsCloser()) {
- m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
- } else {
- m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
- }
- m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
- m_minus.set_e(m_plus.e());
- *out_m_plus = m_plus;
- *out_m_minus = m_minus;
- }
- // Precondition: the value encoded by this Single must be greater or equal
- // than +0.0.
- DiyFp UpperBoundary() const {
- DOUBLE_CONVERSION_ASSERT(Sign() > 0);
- return DiyFp(Significand() * 2 + 1, Exponent() - 1);
- }
- bool LowerBoundaryIsCloser() const {
- // The boundary is closer if the significand is of the form f == 2^p-1 then
- // the lower boundary is closer.
- // Think of v = 1000e10 and v- = 9999e9.
- // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
- // at a distance of 1e8.
- // The only exception is for the smallest normal: the largest denormal is
- // at the same distance as its successor.
- // Note: denormals have the same exponent as the smallest normals.
- bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
- return physical_significand_is_zero && (Exponent() != kDenormalExponent);
- }
- float value() const { return uint32_to_float(d32_); }
- static float Infinity() {
- return Single(kInfinity).value();
- }
- static float NaN() {
- return Single(kNaN).value();
- }
- private:
- static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
- static const int kDenormalExponent = -kExponentBias + 1;
- static const int kMaxExponent = 0xFF - kExponentBias;
- static const uint32_t kInfinity = 0x7F800000;
- static const uint32_t kNaN = 0x7FC00000;
- const uint32_t d32_;
- DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single);
- };
- } // namespace double_conversion
- // ICU PATCH: Close ICU namespace
- U_NAMESPACE_END
- #endif // DOUBLE_CONVERSION_DOUBLE_H_
- #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
|