12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: time.h
- // -----------------------------------------------------------------------------
- //
- // This header file defines abstractions for computing with absolute points
- // in time, durations of time, and formatting and parsing time within a given
- // time zone. The following abstractions are defined:
- //
- // * `absl::Time` defines an absolute, specific instance in time
- // * `absl::Duration` defines a signed, fixed-length span of time
- // * `absl::TimeZone` defines geopolitical time zone regions (as collected
- // within the IANA Time Zone database (https://www.iana.org/time-zones)).
- //
- // Note: Absolute times are distinct from civil times, which refer to the
- // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping
- // between absolute and civil times can be specified by use of time zones
- // (`absl::TimeZone` within this API). That is:
- //
- // Civil Time = F(Absolute Time, Time Zone)
- // Absolute Time = G(Civil Time, Time Zone)
- //
- // See civil_time.h for abstractions related to constructing and manipulating
- // civil time.
- //
- // Example:
- //
- // absl::TimeZone nyc;
- // // LoadTimeZone() may fail so it's always better to check for success.
- // if (!absl::LoadTimeZone("America/New_York", &nyc)) {
- // // handle error case
- // }
- //
- // // My flight leaves NYC on Jan 2, 2017 at 03:04:05
- // absl::CivilSecond cs(2017, 1, 2, 3, 4, 5);
- // absl::Time takeoff = absl::FromCivil(cs, nyc);
- //
- // absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35);
- // absl::Time landing = takeoff + flight_duration;
- //
- // absl::TimeZone syd;
- // if (!absl::LoadTimeZone("Australia/Sydney", &syd)) {
- // // handle error case
- // }
- // std::string s = absl::FormatTime(
- // "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S",
- // landing, syd);
- #ifndef ABSL_TIME_TIME_H_
- #define ABSL_TIME_TIME_H_
- #if !defined(_MSC_VER)
- #include <sys/time.h>
- #else
- // We don't include `winsock2.h` because it drags in `windows.h` and friends,
- // and they define conflicting macros like OPAQUE, ERROR, and more. This has the
- // potential to break Abseil users.
- //
- // Instead we only forward declare `timeval` and require Windows users include
- // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is
- // including 'windows.h' so we are picking the lesser of two evils here.
- struct timeval;
- #endif
- #include <chrono> // NOLINT(build/c++11)
- #include <cmath>
- #include <cstdint>
- #include <ctime>
- #include <ostream>
- #include <string>
- #include <type_traits>
- #include <utility>
- #include "absl/base/macros.h"
- #include "absl/strings/string_view.h"
- #include "absl/time/civil_time.h"
- #include "absl/time/internal/cctz/include/cctz/time_zone.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- class Duration; // Defined below
- class Time; // Defined below
- class TimeZone; // Defined below
- namespace time_internal {
- int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem);
- constexpr Time FromUnixDuration(Duration d);
- constexpr Duration ToUnixDuration(Time t);
- constexpr int64_t GetRepHi(Duration d);
- constexpr uint32_t GetRepLo(Duration d);
- constexpr Duration MakeDuration(int64_t hi, uint32_t lo);
- constexpr Duration MakeDuration(int64_t hi, int64_t lo);
- inline Duration MakePosDoubleDuration(double n);
- constexpr int64_t kTicksPerNanosecond = 4;
- constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;
- template <std::intmax_t N>
- constexpr Duration FromInt64(int64_t v, std::ratio<1, N>);
- constexpr Duration FromInt64(int64_t v, std::ratio<60>);
- constexpr Duration FromInt64(int64_t v, std::ratio<3600>);
- template <typename T>
- using EnableIfIntegral = typename std::enable_if<
- std::is_integral<T>::value || std::is_enum<T>::value, int>::type;
- template <typename T>
- using EnableIfFloat =
- typename std::enable_if<std::is_floating_point<T>::value, int>::type;
- } // namespace time_internal
- // Duration
- //
- // The `absl::Duration` class represents a signed, fixed-length span of time.
- // A `Duration` is generated using a unit-specific factory function, or is
- // the result of subtracting one `absl::Time` from another. Durations behave
- // like unit-safe integers and they support all the natural integer-like
- // arithmetic operations. Arithmetic overflows and saturates at +/- infinity.
- // `Duration` should be passed by value rather than const reference.
- //
- // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`,
- // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for
- // creation of constexpr `Duration` values
- //
- // Examples:
- //
- // constexpr absl::Duration ten_ns = absl::Nanoseconds(10);
- // constexpr absl::Duration min = absl::Minutes(1);
- // constexpr absl::Duration hour = absl::Hours(1);
- // absl::Duration dur = 60 * min; // dur == hour
- // absl::Duration half_sec = absl::Milliseconds(500);
- // absl::Duration quarter_sec = 0.25 * absl::Seconds(1);
- //
- // `Duration` values can be easily converted to an integral number of units
- // using the division operator.
- //
- // Example:
- //
- // constexpr absl::Duration dur = absl::Milliseconds(1500);
- // int64_t ns = dur / absl::Nanoseconds(1); // ns == 1500000000
- // int64_t ms = dur / absl::Milliseconds(1); // ms == 1500
- // int64_t sec = dur / absl::Seconds(1); // sec == 1 (subseconds truncated)
- // int64_t min = dur / absl::Minutes(1); // min == 0
- //
- // See the `IDivDuration()` and `FDivDuration()` functions below for details on
- // how to access the fractional parts of the quotient.
- //
- // Alternatively, conversions can be performed using helpers such as
- // `ToInt64Microseconds()` and `ToDoubleSeconds()`.
- class Duration {
- public:
- // Value semantics.
- constexpr Duration() : rep_hi_(0), rep_lo_(0) {} // zero-length duration
- // Copyable.
- #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1910
- // Explicitly defining the constexpr copy constructor avoids an MSVC bug.
- constexpr Duration(const Duration& d)
- : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {}
- #else
- constexpr Duration(const Duration& d) = default;
- #endif
- Duration& operator=(const Duration& d) = default;
- // Compound assignment operators.
- Duration& operator+=(Duration d);
- Duration& operator-=(Duration d);
- Duration& operator*=(int64_t r);
- Duration& operator*=(double r);
- Duration& operator/=(int64_t r);
- Duration& operator/=(double r);
- Duration& operator%=(Duration rhs);
- // Overloads that forward to either the int64_t or double overloads above.
- // Integer operands must be representable as int64_t.
- template <typename T>
- Duration& operator*=(T r) {
- int64_t x = r;
- return *this *= x;
- }
- template <typename T>
- Duration& operator/=(T r) {
- int64_t x = r;
- return *this /= x;
- }
- Duration& operator*=(float r) { return *this *= static_cast<double>(r); }
- Duration& operator/=(float r) { return *this /= static_cast<double>(r); }
- template <typename H>
- friend H AbslHashValue(H h, Duration d) {
- return H::combine(std::move(h), d.rep_hi_, d.rep_lo_);
- }
- private:
- friend constexpr int64_t time_internal::GetRepHi(Duration d);
- friend constexpr uint32_t time_internal::GetRepLo(Duration d);
- friend constexpr Duration time_internal::MakeDuration(int64_t hi,
- uint32_t lo);
- constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {}
- int64_t rep_hi_;
- uint32_t rep_lo_;
- };
- // Relational Operators
- constexpr bool operator<(Duration lhs, Duration rhs);
- constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; }
- constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); }
- constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); }
- constexpr bool operator==(Duration lhs, Duration rhs);
- constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); }
- // Additive Operators
- constexpr Duration operator-(Duration d);
- inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; }
- inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; }
- // Multiplicative Operators
- // Integer operands must be representable as int64_t.
- template <typename T>
- Duration operator*(Duration lhs, T rhs) {
- return lhs *= rhs;
- }
- template <typename T>
- Duration operator*(T lhs, Duration rhs) {
- return rhs *= lhs;
- }
- template <typename T>
- Duration operator/(Duration lhs, T rhs) {
- return lhs /= rhs;
- }
- inline int64_t operator/(Duration lhs, Duration rhs) {
- return time_internal::IDivDuration(true, lhs, rhs,
- &lhs); // trunc towards zero
- }
- inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; }
- // IDivDuration()
- //
- // Divides a numerator `Duration` by a denominator `Duration`, returning the
- // quotient and remainder. The remainder always has the same sign as the
- // numerator. The returned quotient and remainder respect the identity:
- //
- // numerator = denominator * quotient + remainder
- //
- // Returned quotients are capped to the range of `int64_t`, with the difference
- // spilling into the remainder to uphold the above identity. This means that the
- // remainder returned could differ from the remainder returned by
- // `Duration::operator%` for huge quotients.
- //
- // See also the notes on `InfiniteDuration()` below regarding the behavior of
- // division involving zero and infinite durations.
- //
- // Example:
- //
- // constexpr absl::Duration a =
- // absl::Seconds(std::numeric_limits<int64_t>::max()); // big
- // constexpr absl::Duration b = absl::Nanoseconds(1); // small
- //
- // absl::Duration rem = a % b;
- // // rem == absl::ZeroDuration()
- //
- // // Here, q would overflow int64_t, so rem accounts for the difference.
- // int64_t q = absl::IDivDuration(a, b, &rem);
- // // q == std::numeric_limits<int64_t>::max(), rem == a - b * q
- inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) {
- return time_internal::IDivDuration(true, num, den,
- rem); // trunc towards zero
- }
- // FDivDuration()
- //
- // Divides a `Duration` numerator into a fractional number of units of a
- // `Duration` denominator.
- //
- // See also the notes on `InfiniteDuration()` below regarding the behavior of
- // division involving zero and infinite durations.
- //
- // Example:
- //
- // double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1));
- // // d == 1.5
- double FDivDuration(Duration num, Duration den);
- // ZeroDuration()
- //
- // Returns a zero-length duration. This function behaves just like the default
- // constructor, but the name helps make the semantics clear at call sites.
- constexpr Duration ZeroDuration() { return Duration(); }
- // AbsDuration()
- //
- // Returns the absolute value of a duration.
- inline Duration AbsDuration(Duration d) {
- return (d < ZeroDuration()) ? -d : d;
- }
- // Trunc()
- //
- // Truncates a duration (toward zero) to a multiple of a non-zero unit.
- //
- // Example:
- //
- // absl::Duration d = absl::Nanoseconds(123456789);
- // absl::Duration a = absl::Trunc(d, absl::Microseconds(1)); // 123456us
- Duration Trunc(Duration d, Duration unit);
- // Floor()
- //
- // Floors a duration using the passed duration unit to its largest value not
- // greater than the duration.
- //
- // Example:
- //
- // absl::Duration d = absl::Nanoseconds(123456789);
- // absl::Duration b = absl::Floor(d, absl::Microseconds(1)); // 123456us
- Duration Floor(Duration d, Duration unit);
- // Ceil()
- //
- // Returns the ceiling of a duration using the passed duration unit to its
- // smallest value not less than the duration.
- //
- // Example:
- //
- // absl::Duration d = absl::Nanoseconds(123456789);
- // absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us
- Duration Ceil(Duration d, Duration unit);
- // InfiniteDuration()
- //
- // Returns an infinite `Duration`. To get a `Duration` representing negative
- // infinity, use `-InfiniteDuration()`.
- //
- // Duration arithmetic overflows to +/- infinity and saturates. In general,
- // arithmetic with `Duration` infinities is similar to IEEE 754 infinities
- // except where IEEE 754 NaN would be involved, in which case +/-
- // `InfiniteDuration()` is used in place of a "nan" Duration.
- //
- // Examples:
- //
- // constexpr absl::Duration inf = absl::InfiniteDuration();
- // const absl::Duration d = ... any finite duration ...
- //
- // inf == inf + inf
- // inf == inf + d
- // inf == inf - inf
- // -inf == d - inf
- //
- // inf == d * 1e100
- // inf == inf / 2
- // 0 == d / inf
- // INT64_MAX == inf / d
- //
- // d < inf
- // -inf < d
- //
- // // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
- // inf == d / 0
- // INT64_MAX == d / absl::ZeroDuration()
- //
- // The examples involving the `/` operator above also apply to `IDivDuration()`
- // and `FDivDuration()`.
- constexpr Duration InfiniteDuration();
- // Nanoseconds()
- // Microseconds()
- // Milliseconds()
- // Seconds()
- // Minutes()
- // Hours()
- //
- // Factory functions for constructing `Duration` values from an integral number
- // of the unit indicated by the factory function's name. The number must be
- // representable as int64_t.
- //
- // NOTE: no "Days()" factory function exists because "a day" is ambiguous.
- // Civil days are not always 24 hours long, and a 24-hour duration often does
- // not correspond with a civil day. If a 24-hour duration is needed, use
- // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay
- // from civil_time.h.
- //
- // Example:
- //
- // absl::Duration a = absl::Seconds(60);
- // absl::Duration b = absl::Minutes(1); // b == a
- constexpr Duration Nanoseconds(int64_t n);
- constexpr Duration Microseconds(int64_t n);
- constexpr Duration Milliseconds(int64_t n);
- constexpr Duration Seconds(int64_t n);
- constexpr Duration Minutes(int64_t n);
- constexpr Duration Hours(int64_t n);
- // Factory overloads for constructing `Duration` values from a floating-point
- // number of the unit indicated by the factory function's name. These functions
- // exist for convenience, but they are not as efficient as the integral
- // factories, which should be preferred.
- //
- // Example:
- //
- // auto a = absl::Seconds(1.5); // OK
- // auto b = absl::Milliseconds(1500); // BETTER
- template <typename T, time_internal::EnableIfFloat<T> = 0>
- Duration Nanoseconds(T n) {
- return n * Nanoseconds(1);
- }
- template <typename T, time_internal::EnableIfFloat<T> = 0>
- Duration Microseconds(T n) {
- return n * Microseconds(1);
- }
- template <typename T, time_internal::EnableIfFloat<T> = 0>
- Duration Milliseconds(T n) {
- return n * Milliseconds(1);
- }
- template <typename T, time_internal::EnableIfFloat<T> = 0>
- Duration Seconds(T n) {
- if (n >= 0) { // Note: `NaN >= 0` is false.
- if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) {
- return InfiniteDuration();
- }
- return time_internal::MakePosDoubleDuration(n);
- } else {
- if (std::isnan(n))
- return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration();
- if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration();
- return -time_internal::MakePosDoubleDuration(-n);
- }
- }
- template <typename T, time_internal::EnableIfFloat<T> = 0>
- Duration Minutes(T n) {
- return n * Minutes(1);
- }
- template <typename T, time_internal::EnableIfFloat<T> = 0>
- Duration Hours(T n) {
- return n * Hours(1);
- }
- // ToInt64Nanoseconds()
- // ToInt64Microseconds()
- // ToInt64Milliseconds()
- // ToInt64Seconds()
- // ToInt64Minutes()
- // ToInt64Hours()
- //
- // Helper functions that convert a Duration to an integral count of the
- // indicated unit. These functions are shorthand for the `IDivDuration()`
- // function above; see its documentation for details about overflow, etc.
- //
- // Example:
- //
- // absl::Duration d = absl::Milliseconds(1500);
- // int64_t isec = absl::ToInt64Seconds(d); // isec == 1
- int64_t ToInt64Nanoseconds(Duration d);
- int64_t ToInt64Microseconds(Duration d);
- int64_t ToInt64Milliseconds(Duration d);
- int64_t ToInt64Seconds(Duration d);
- int64_t ToInt64Minutes(Duration d);
- int64_t ToInt64Hours(Duration d);
- // ToDoubleNanoSeconds()
- // ToDoubleMicroseconds()
- // ToDoubleMilliseconds()
- // ToDoubleSeconds()
- // ToDoubleMinutes()
- // ToDoubleHours()
- //
- // Helper functions that convert a Duration to a floating point count of the
- // indicated unit. These functions are shorthand for the `FDivDuration()`
- // function above; see its documentation for details about overflow, etc.
- //
- // Example:
- //
- // absl::Duration d = absl::Milliseconds(1500);
- // double dsec = absl::ToDoubleSeconds(d); // dsec == 1.5
- double ToDoubleNanoseconds(Duration d);
- double ToDoubleMicroseconds(Duration d);
- double ToDoubleMilliseconds(Duration d);
- double ToDoubleSeconds(Duration d);
- double ToDoubleMinutes(Duration d);
- double ToDoubleHours(Duration d);
- // FromChrono()
- //
- // Converts any of the pre-defined std::chrono durations to an absl::Duration.
- //
- // Example:
- //
- // std::chrono::milliseconds ms(123);
- // absl::Duration d = absl::FromChrono(ms);
- constexpr Duration FromChrono(const std::chrono::nanoseconds& d);
- constexpr Duration FromChrono(const std::chrono::microseconds& d);
- constexpr Duration FromChrono(const std::chrono::milliseconds& d);
- constexpr Duration FromChrono(const std::chrono::seconds& d);
- constexpr Duration FromChrono(const std::chrono::minutes& d);
- constexpr Duration FromChrono(const std::chrono::hours& d);
- // ToChronoNanoseconds()
- // ToChronoMicroseconds()
- // ToChronoMilliseconds()
- // ToChronoSeconds()
- // ToChronoMinutes()
- // ToChronoHours()
- //
- // Converts an absl::Duration to any of the pre-defined std::chrono durations.
- // If overflow would occur, the returned value will saturate at the min/max
- // chrono duration value instead.
- //
- // Example:
- //
- // absl::Duration d = absl::Microseconds(123);
- // auto x = absl::ToChronoMicroseconds(d);
- // auto y = absl::ToChronoNanoseconds(d); // x == y
- // auto z = absl::ToChronoSeconds(absl::InfiniteDuration());
- // // z == std::chrono::seconds::max()
- std::chrono::nanoseconds ToChronoNanoseconds(Duration d);
- std::chrono::microseconds ToChronoMicroseconds(Duration d);
- std::chrono::milliseconds ToChronoMilliseconds(Duration d);
- std::chrono::seconds ToChronoSeconds(Duration d);
- std::chrono::minutes ToChronoMinutes(Duration d);
- std::chrono::hours ToChronoHours(Duration d);
- // FormatDuration()
- //
- // Returns a string representing the duration in the form "72h3m0.5s".
- // Returns "inf" or "-inf" for +/- `InfiniteDuration()`.
- std::string FormatDuration(Duration d);
- // Output stream operator.
- inline std::ostream& operator<<(std::ostream& os, Duration d) {
- return os << FormatDuration(d);
- }
- // ParseDuration()
- //
- // Parses a duration string consisting of a possibly signed sequence of
- // decimal numbers, each with an optional fractional part and a unit
- // suffix. The valid suffixes are "ns", "us" "ms", "s", "m", and "h".
- // Simple examples include "300ms", "-1.5h", and "2h45m". Parses "0" as
- // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.
- bool ParseDuration(absl::string_view dur_string, Duration* d);
- // Support for flag values of type Duration. Duration flags must be specified
- // in a format that is valid input for absl::ParseDuration().
- bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error);
- std::string AbslUnparseFlag(Duration d);
- ABSL_DEPRECATED("Use AbslParseFlag() instead.")
- bool ParseFlag(const std::string& text, Duration* dst, std::string* error);
- ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
- std::string UnparseFlag(Duration d);
- // Time
- //
- // An `absl::Time` represents a specific instant in time. Arithmetic operators
- // are provided for naturally expressing time calculations. Instances are
- // created using `absl::Now()` and the `absl::From*()` factory functions that
- // accept the gamut of other time representations. Formatting and parsing
- // functions are provided for conversion to and from strings. `absl::Time`
- // should be passed by value rather than const reference.
- //
- // `absl::Time` assumes there are 60 seconds in a minute, which means the
- // underlying time scales must be "smeared" to eliminate leap seconds.
- // See https://developers.google.com/time/smear.
- //
- // Even though `absl::Time` supports a wide range of timestamps, exercise
- // caution when using values in the distant past. `absl::Time` uses the
- // Proleptic Gregorian calendar, which extends the Gregorian calendar backward
- // to dates before its introduction in 1582.
- // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
- // for more information. Use the ICU calendar classes to convert a date in
- // some other calendar (http://userguide.icu-project.org/datetime/calendar).
- //
- // Similarly, standardized time zones are a reasonably recent innovation, with
- // the Greenwich prime meridian being established in 1884. The TZ database
- // itself does not profess accurate offsets for timestamps prior to 1970. The
- // breakdown of future timestamps is subject to the whim of regional
- // governments.
- //
- // The `absl::Time` class represents an instant in time as a count of clock
- // ticks of some granularity (resolution) from some starting point (epoch).
- //
- // `absl::Time` uses a resolution that is high enough to avoid loss in
- // precision, and a range that is wide enough to avoid overflow, when
- // converting between tick counts in most Google time scales (i.e., resolution
- // of at least one nanosecond, and range +/-100 billion years). Conversions
- // between the time scales are performed by truncating (towards negative
- // infinity) to the nearest representable point.
- //
- // Examples:
- //
- // absl::Time t1 = ...;
- // absl::Time t2 = t1 + absl::Minutes(2);
- // absl::Duration d = t2 - t1; // == absl::Minutes(2)
- //
- class Time {
- public:
- // Value semantics.
- // Returns the Unix epoch. However, those reading your code may not know
- // or expect the Unix epoch as the default value, so make your code more
- // readable by explicitly initializing all instances before use.
- //
- // Example:
- // absl::Time t = absl::UnixEpoch();
- // absl::Time t = absl::Now();
- // absl::Time t = absl::TimeFromTimeval(tv);
- // absl::Time t = absl::InfinitePast();
- constexpr Time() = default;
- // Copyable.
- constexpr Time(const Time& t) = default;
- Time& operator=(const Time& t) = default;
- // Assignment operators.
- Time& operator+=(Duration d) {
- rep_ += d;
- return *this;
- }
- Time& operator-=(Duration d) {
- rep_ -= d;
- return *this;
- }
- // Time::Breakdown
- //
- // The calendar and wall-clock (aka "civil time") components of an
- // `absl::Time` in a certain `absl::TimeZone`. This struct is not
- // intended to represent an instant in time. So, rather than passing
- // a `Time::Breakdown` to a function, pass an `absl::Time` and an
- // `absl::TimeZone`.
- //
- // Deprecated. Use `absl::TimeZone::CivilInfo`.
- struct
- Breakdown {
- int64_t year; // year (e.g., 2013)
- int month; // month of year [1:12]
- int day; // day of month [1:31]
- int hour; // hour of day [0:23]
- int minute; // minute of hour [0:59]
- int second; // second of minute [0:59]
- Duration subsecond; // [Seconds(0):Seconds(1)) if finite
- int weekday; // 1==Mon, ..., 7=Sun
- int yearday; // day of year [1:366]
- // Note: The following fields exist for backward compatibility
- // with older APIs. Accessing these fields directly is a sign of
- // imprudent logic in the calling code. Modern time-related code
- // should only access this data indirectly by way of FormatTime().
- // These fields are undefined for InfiniteFuture() and InfinitePast().
- int offset; // seconds east of UTC
- bool is_dst; // is offset non-standard?
- const char* zone_abbr; // time-zone abbreviation (e.g., "PST")
- };
- // Time::In()
- //
- // Returns the breakdown of this instant in the given TimeZone.
- //
- // Deprecated. Use `absl::TimeZone::At(Time)`.
- Breakdown In(TimeZone tz) const;
- template <typename H>
- friend H AbslHashValue(H h, Time t) {
- return H::combine(std::move(h), t.rep_);
- }
- private:
- friend constexpr Time time_internal::FromUnixDuration(Duration d);
- friend constexpr Duration time_internal::ToUnixDuration(Time t);
- friend constexpr bool operator<(Time lhs, Time rhs);
- friend constexpr bool operator==(Time lhs, Time rhs);
- friend Duration operator-(Time lhs, Time rhs);
- friend constexpr Time UniversalEpoch();
- friend constexpr Time InfiniteFuture();
- friend constexpr Time InfinitePast();
- constexpr explicit Time(Duration rep) : rep_(rep) {}
- Duration rep_;
- };
- // Relational Operators
- constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; }
- constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; }
- constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); }
- constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); }
- constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; }
- constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); }
- // Additive Operators
- inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; }
- inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; }
- inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; }
- inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; }
- // UnixEpoch()
- //
- // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000".
- constexpr Time UnixEpoch() { return Time(); }
- // UniversalEpoch()
- //
- // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the
- // epoch of the ICU Universal Time Scale.
- constexpr Time UniversalEpoch() {
- // 719162 is the number of days from 0001-01-01 to 1970-01-01,
- // assuming the Gregorian calendar.
- return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U));
- }
- // InfiniteFuture()
- //
- // Returns an `absl::Time` that is infinitely far in the future.
- constexpr Time InfiniteFuture() {
- return Time(
- time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U));
- }
- // InfinitePast()
- //
- // Returns an `absl::Time` that is infinitely far in the past.
- constexpr Time InfinitePast() {
- return Time(
- time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U));
- }
- // FromUnixNanos()
- // FromUnixMicros()
- // FromUnixMillis()
- // FromUnixSeconds()
- // FromTimeT()
- // FromUDate()
- // FromUniversal()
- //
- // Creates an `absl::Time` from a variety of other representations.
- constexpr Time FromUnixNanos(int64_t ns);
- constexpr Time FromUnixMicros(int64_t us);
- constexpr Time FromUnixMillis(int64_t ms);
- constexpr Time FromUnixSeconds(int64_t s);
- constexpr Time FromTimeT(time_t t);
- Time FromUDate(double udate);
- Time FromUniversal(int64_t universal);
- // ToUnixNanos()
- // ToUnixMicros()
- // ToUnixMillis()
- // ToUnixSeconds()
- // ToTimeT()
- // ToUDate()
- // ToUniversal()
- //
- // Converts an `absl::Time` to a variety of other representations. Note that
- // these operations round down toward negative infinity where necessary to
- // adjust to the resolution of the result type. Beware of possible time_t
- // over/underflow in ToTime{T,val,spec}() on 32-bit platforms.
- int64_t ToUnixNanos(Time t);
- int64_t ToUnixMicros(Time t);
- int64_t ToUnixMillis(Time t);
- int64_t ToUnixSeconds(Time t);
- time_t ToTimeT(Time t);
- double ToUDate(Time t);
- int64_t ToUniversal(Time t);
- // DurationFromTimespec()
- // DurationFromTimeval()
- // ToTimespec()
- // ToTimeval()
- // TimeFromTimespec()
- // TimeFromTimeval()
- // ToTimespec()
- // ToTimeval()
- //
- // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2)
- // and select(2)), while others use them as a Time (e.g. clock_gettime(2)
- // and gettimeofday(2)), so conversion functions are provided for both cases.
- // The "to timespec/val" direction is easily handled via overloading, but
- // for "from timespec/val" the desired type is part of the function name.
- Duration DurationFromTimespec(timespec ts);
- Duration DurationFromTimeval(timeval tv);
- timespec ToTimespec(Duration d);
- timeval ToTimeval(Duration d);
- Time TimeFromTimespec(timespec ts);
- Time TimeFromTimeval(timeval tv);
- timespec ToTimespec(Time t);
- timeval ToTimeval(Time t);
- // FromChrono()
- //
- // Converts a std::chrono::system_clock::time_point to an absl::Time.
- //
- // Example:
- //
- // auto tp = std::chrono::system_clock::from_time_t(123);
- // absl::Time t = absl::FromChrono(tp);
- // // t == absl::FromTimeT(123)
- Time FromChrono(const std::chrono::system_clock::time_point& tp);
- // ToChronoTime()
- //
- // Converts an absl::Time to a std::chrono::system_clock::time_point. If
- // overflow would occur, the returned value will saturate at the min/max time
- // point value instead.
- //
- // Example:
- //
- // absl::Time t = absl::FromTimeT(123);
- // auto tp = absl::ToChronoTime(t);
- // // tp == std::chrono::system_clock::from_time_t(123);
- std::chrono::system_clock::time_point ToChronoTime(Time);
- // Support for flag values of type Time. Time flags must be specified in a
- // format that matches absl::RFC3339_full. For example:
- //
- // --start_time=2016-01-02T03:04:05.678+08:00
- //
- // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required.
- //
- // Additionally, if you'd like to specify a time as a count of
- // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag
- // and add that duration to absl::UnixEpoch() to get an absl::Time.
- bool AbslParseFlag(absl::string_view text, Time* t, std::string* error);
- std::string AbslUnparseFlag(Time t);
- ABSL_DEPRECATED("Use AbslParseFlag() instead.")
- bool ParseFlag(const std::string& text, Time* t, std::string* error);
- ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
- std::string UnparseFlag(Time t);
- // TimeZone
- //
- // The `absl::TimeZone` is an opaque, small, value-type class representing a
- // geo-political region within which particular rules are used for converting
- // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone`
- // values are named using the TZ identifiers from the IANA Time Zone Database,
- // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values
- // are created from factory functions such as `absl::LoadTimeZone()`. Note:
- // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by
- // value rather than const reference.
- //
- // For more on the fundamental concepts of time zones, absolute times, and civil
- // times, see https://github.com/google/cctz#fundamental-concepts
- //
- // Examples:
- //
- // absl::TimeZone utc = absl::UTCTimeZone();
- // absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60);
- // absl::TimeZone loc = absl::LocalTimeZone();
- // absl::TimeZone lax;
- // if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) {
- // // handle error case
- // }
- //
- // See also:
- // - https://github.com/google/cctz
- // - https://www.iana.org/time-zones
- // - https://en.wikipedia.org/wiki/Zoneinfo
- class TimeZone {
- public:
- explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {}
- TimeZone() = default; // UTC, but prefer UTCTimeZone() to be explicit.
- // Copyable.
- TimeZone(const TimeZone&) = default;
- TimeZone& operator=(const TimeZone&) = default;
- explicit operator time_internal::cctz::time_zone() const { return cz_; }
- std::string name() const { return cz_.name(); }
- // TimeZone::CivilInfo
- //
- // Information about the civil time corresponding to an absolute time.
- // This struct is not intended to represent an instant in time. So, rather
- // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time`
- // and an `absl::TimeZone`.
- struct CivilInfo {
- CivilSecond cs;
- Duration subsecond;
- // Note: The following fields exist for backward compatibility
- // with older APIs. Accessing these fields directly is a sign of
- // imprudent logic in the calling code. Modern time-related code
- // should only access this data indirectly by way of FormatTime().
- // These fields are undefined for InfiniteFuture() and InfinitePast().
- int offset; // seconds east of UTC
- bool is_dst; // is offset non-standard?
- const char* zone_abbr; // time-zone abbreviation (e.g., "PST")
- };
- // TimeZone::At(Time)
- //
- // Returns the civil time for this TimeZone at a certain `absl::Time`.
- // If the input time is infinite, the output civil second will be set to
- // CivilSecond::max() or min(), and the subsecond will be infinite.
- //
- // Example:
- //
- // const auto epoch = lax.At(absl::UnixEpoch());
- // // epoch.cs == 1969-12-31 16:00:00
- // // epoch.subsecond == absl::ZeroDuration()
- // // epoch.offset == -28800
- // // epoch.is_dst == false
- // // epoch.abbr == "PST"
- CivilInfo At(Time t) const;
- // TimeZone::TimeInfo
- //
- // Information about the absolute times corresponding to a civil time.
- // (Subseconds must be handled separately.)
- //
- // It is possible for a caller to pass a civil-time value that does
- // not represent an actual or unique instant in time (due to a shift
- // in UTC offset in the TimeZone, which results in a discontinuity in
- // the civil-time components). For example, a daylight-saving-time
- // transition skips or repeats civil times---in the United States,
- // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15
- // occurred twice---so requests for such times are not well-defined.
- // To account for these possibilities, `absl::TimeZone::TimeInfo` is
- // richer than just a single `absl::Time`.
- struct TimeInfo {
- enum CivilKind {
- UNIQUE, // the civil time was singular (pre == trans == post)
- SKIPPED, // the civil time did not exist (pre >= trans > post)
- REPEATED, // the civil time was ambiguous (pre < trans <= post)
- } kind;
- Time pre; // time calculated using the pre-transition offset
- Time trans; // when the civil-time discontinuity occurred
- Time post; // time calculated using the post-transition offset
- };
- // TimeZone::At(CivilSecond)
- //
- // Returns an `absl::TimeInfo` containing the absolute time(s) for this
- // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or
- // repeated, returns times calculated using the pre-transition and post-
- // transition UTC offsets, plus the transition time itself.
- //
- // Examples:
- //
- // // A unique civil time
- // const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0));
- // // jan01.kind == TimeZone::TimeInfo::UNIQUE
- // // jan01.pre is 2011-01-01 00:00:00 -0800
- // // jan01.trans is 2011-01-01 00:00:00 -0800
- // // jan01.post is 2011-01-01 00:00:00 -0800
- //
- // // A Spring DST transition, when there is a gap in civil time
- // const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0));
- // // mar13.kind == TimeZone::TimeInfo::SKIPPED
- // // mar13.pre is 2011-03-13 03:15:00 -0700
- // // mar13.trans is 2011-03-13 03:00:00 -0700
- // // mar13.post is 2011-03-13 01:15:00 -0800
- //
- // // A Fall DST transition, when civil times are repeated
- // const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0));
- // // nov06.kind == TimeZone::TimeInfo::REPEATED
- // // nov06.pre is 2011-11-06 01:15:00 -0700
- // // nov06.trans is 2011-11-06 01:00:00 -0800
- // // nov06.post is 2011-11-06 01:15:00 -0800
- TimeInfo At(CivilSecond ct) const;
- // TimeZone::NextTransition()
- // TimeZone::PrevTransition()
- //
- // Finds the time of the next/previous offset change in this time zone.
- //
- // By definition, `NextTransition(t, &trans)` returns false when `t` is
- // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false
- // when `t` is `InfinitePast()`. If the zone has no transitions, the
- // result will also be false no matter what the argument.
- //
- // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)`
- // returns true and sets `trans` to the first recorded transition. Chains
- // of calls to `NextTransition()/PrevTransition()` will eventually return
- // false, but it is unspecified exactly when `NextTransition(t, &trans)`
- // jumps to false, or what time is set by `PrevTransition(t, &trans)` for
- // a very distant `t`.
- //
- // Note: Enumeration of time-zone transitions is for informational purposes
- // only. Modern time-related code should not care about when offset changes
- // occur.
- //
- // Example:
- // absl::TimeZone nyc;
- // if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... }
- // const auto now = absl::Now();
- // auto t = absl::InfinitePast();
- // absl::TimeZone::CivilTransition trans;
- // while (t <= now && nyc.NextTransition(t, &trans)) {
- // // transition: trans.from -> trans.to
- // t = nyc.At(trans.to).trans;
- // }
- struct CivilTransition {
- CivilSecond from; // the civil time we jump from
- CivilSecond to; // the civil time we jump to
- };
- bool NextTransition(Time t, CivilTransition* trans) const;
- bool PrevTransition(Time t, CivilTransition* trans) const;
- template <typename H>
- friend H AbslHashValue(H h, TimeZone tz) {
- return H::combine(std::move(h), tz.cz_);
- }
- private:
- friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; }
- friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; }
- friend std::ostream& operator<<(std::ostream& os, TimeZone tz) {
- return os << tz.name();
- }
- time_internal::cctz::time_zone cz_;
- };
- // LoadTimeZone()
- //
- // Loads the named zone. May perform I/O on the initial load of the named
- // zone. If the name is invalid, or some other kind of error occurs, returns
- // `false` and `*tz` is set to the UTC time zone.
- inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) {
- if (name == "localtime") {
- *tz = TimeZone(time_internal::cctz::local_time_zone());
- return true;
- }
- time_internal::cctz::time_zone cz;
- const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz);
- *tz = TimeZone(cz);
- return b;
- }
- // FixedTimeZone()
- //
- // Returns a TimeZone that is a fixed offset (seconds east) from UTC.
- // Note: If the absolute value of the offset is greater than 24 hours
- // you'll get UTC (i.e., no offset) instead.
- inline TimeZone FixedTimeZone(int seconds) {
- return TimeZone(
- time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds)));
- }
- // UTCTimeZone()
- //
- // Convenience method returning the UTC time zone.
- inline TimeZone UTCTimeZone() {
- return TimeZone(time_internal::cctz::utc_time_zone());
- }
- // LocalTimeZone()
- //
- // Convenience method returning the local time zone, or UTC if there is
- // no configured local zone. Warning: Be wary of using LocalTimeZone(),
- // and particularly so in a server process, as the zone configured for the
- // local machine should be irrelevant. Prefer an explicit zone name.
- inline TimeZone LocalTimeZone() {
- return TimeZone(time_internal::cctz::local_time_zone());
- }
- // ToCivilSecond()
- // ToCivilMinute()
- // ToCivilHour()
- // ToCivilDay()
- // ToCivilMonth()
- // ToCivilYear()
- //
- // Helpers for TimeZone::At(Time) to return particularly aligned civil times.
- //
- // Example:
- //
- // absl::Time t = ...;
- // absl::TimeZone tz = ...;
- // const auto cd = absl::ToCivilDay(t, tz);
- inline CivilSecond ToCivilSecond(Time t, TimeZone tz) {
- return tz.At(t).cs; // already a CivilSecond
- }
- inline CivilMinute ToCivilMinute(Time t, TimeZone tz) {
- return CivilMinute(tz.At(t).cs);
- }
- inline CivilHour ToCivilHour(Time t, TimeZone tz) {
- return CivilHour(tz.At(t).cs);
- }
- inline CivilDay ToCivilDay(Time t, TimeZone tz) {
- return CivilDay(tz.At(t).cs);
- }
- inline CivilMonth ToCivilMonth(Time t, TimeZone tz) {
- return CivilMonth(tz.At(t).cs);
- }
- inline CivilYear ToCivilYear(Time t, TimeZone tz) {
- return CivilYear(tz.At(t).cs);
- }
- // FromCivil()
- //
- // Helper for TimeZone::At(CivilSecond) that provides "order-preserving
- // semantics." If the civil time maps to a unique time, that time is
- // returned. If the civil time is repeated in the given time zone, the
- // time using the pre-transition offset is returned. Otherwise, the
- // civil time is skipped in the given time zone, and the transition time
- // is returned. This means that for any two civil times, ct1 and ct2,
- // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case
- // being when two non-existent civil times map to the same transition time.
- //
- // Note: Accepts civil times of any alignment.
- inline Time FromCivil(CivilSecond ct, TimeZone tz) {
- const auto ti = tz.At(ct);
- if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans;
- return ti.pre;
- }
- // TimeConversion
- //
- // An `absl::TimeConversion` represents the conversion of year, month, day,
- // hour, minute, and second values (i.e., a civil time), in a particular
- // `absl::TimeZone`, to a time instant (an absolute time), as returned by
- // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`.
- //
- // Deprecated. Use `absl::TimeZone::TimeInfo`.
- struct
- TimeConversion {
- Time pre; // time calculated using the pre-transition offset
- Time trans; // when the civil-time discontinuity occurred
- Time post; // time calculated using the post-transition offset
- enum Kind {
- UNIQUE, // the civil time was singular (pre == trans == post)
- SKIPPED, // the civil time did not exist
- REPEATED, // the civil time was ambiguous
- };
- Kind kind;
- bool normalized; // input values were outside their valid ranges
- };
- // ConvertDateTime()
- //
- // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes
- // the civil time as six, separate values (YMDHMS).
- //
- // The input month, day, hour, minute, and second values can be outside
- // of their valid ranges, in which case they will be "normalized" during
- // the conversion.
- //
- // Example:
- //
- // // "October 32" normalizes to "November 1".
- // absl::TimeConversion tc =
- // absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax);
- // // tc.kind == TimeConversion::UNIQUE && tc.normalized == true
- // // absl::ToCivilDay(tc.pre, tz).month() == 11
- // // absl::ToCivilDay(tc.pre, tz).day() == 1
- //
- // Deprecated. Use `absl::TimeZone::At(CivilSecond)`.
- TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour,
- int min, int sec, TimeZone tz);
- // FromDateTime()
- //
- // A convenience wrapper for `absl::ConvertDateTime()` that simply returns
- // the "pre" `absl::Time`. That is, the unique result, or the instant that
- // is correct using the pre-transition offset (as if the transition never
- // happened).
- //
- // Example:
- //
- // absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax);
- // // t = 2017-09-26 09:30:00 -0700
- //
- // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the
- // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil
- // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`.
- inline Time FromDateTime(int64_t year, int mon, int day, int hour,
- int min, int sec, TimeZone tz) {
- return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre;
- }
- // FromTM()
- //
- // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and
- // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3)
- // for a description of the expected values of the tm fields. If the indicated
- // time instant is not unique (see `absl::TimeZone::At(absl::CivilSecond)`
- // above), the `tm_isdst` field is consulted to select the desired instant
- // (`tm_isdst` > 0 means DST, `tm_isdst` == 0 means no DST, `tm_isdst` < 0
- // means use the post-transition offset).
- Time FromTM(const struct tm& tm, TimeZone tz);
- // ToTM()
- //
- // Converts the given `absl::Time` to a struct tm using the given time zone.
- // See ctime(3) for a description of the values of the tm fields.
- struct tm ToTM(Time t, TimeZone tz);
- // RFC3339_full
- // RFC3339_sec
- //
- // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings,
- // with trailing zeros trimmed or with fractional seconds omitted altogether.
- //
- // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and
- // time with UTC offset. Also note the use of "%Y": RFC3339 mandates that
- // years have exactly four digits, but we allow them to take their natural
- // width.
- ABSL_DLL extern const char RFC3339_full[]; // %Y-%m-%d%ET%H:%M:%E*S%Ez
- ABSL_DLL extern const char RFC3339_sec[]; // %Y-%m-%d%ET%H:%M:%S%Ez
- // RFC1123_full
- // RFC1123_no_wday
- //
- // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings.
- ABSL_DLL extern const char RFC1123_full[]; // %a, %d %b %E4Y %H:%M:%S %z
- ABSL_DLL extern const char RFC1123_no_wday[]; // %d %b %E4Y %H:%M:%S %z
- // FormatTime()
- //
- // Formats the given `absl::Time` in the `absl::TimeZone` according to the
- // provided format string. Uses strftime()-like formatting options, with
- // the following extensions:
- //
- // - %Ez - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm)
- // - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss)
- // - %E#S - Seconds with # digits of fractional precision
- // - %E*S - Seconds with full fractional precision (a literal '*')
- // - %E#f - Fractional seconds with # digits of precision
- // - %E*f - Fractional seconds with full precision (a literal '*')
- // - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999)
- // - %ET - The RFC3339 "date-time" separator "T"
- //
- // Note that %E0S behaves like %S, and %E0f produces no characters. In
- // contrast %E*f always produces at least one digit, which may be '0'.
- //
- // Note that %Y produces as many characters as it takes to fully render the
- // year. A year outside of [-999:9999] when formatted with %E4Y will produce
- // more than four characters, just like %Y.
- //
- // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z)
- // so that the result uniquely identifies a time instant.
- //
- // Example:
- //
- // absl::CivilSecond cs(2013, 1, 2, 3, 4, 5);
- // absl::Time t = absl::FromCivil(cs, lax);
- // std::string f = absl::FormatTime("%H:%M:%S", t, lax); // "03:04:05"
- // f = absl::FormatTime("%H:%M:%E3S", t, lax); // "03:04:05.000"
- //
- // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned
- // string will be exactly "infinite-future". If the given `absl::Time` is
- // `absl::InfinitePast()`, the returned string will be exactly "infinite-past".
- // In both cases the given format string and `absl::TimeZone` are ignored.
- //
- std::string FormatTime(absl::string_view format, Time t, TimeZone tz);
- // Convenience functions that format the given time using the RFC3339_full
- // format. The first overload uses the provided TimeZone, while the second
- // uses LocalTimeZone().
- std::string FormatTime(Time t, TimeZone tz);
- std::string FormatTime(Time t);
- // Output stream operator.
- inline std::ostream& operator<<(std::ostream& os, Time t) {
- return os << FormatTime(t);
- }
- // ParseTime()
- //
- // Parses an input string according to the provided format string and
- // returns the corresponding `absl::Time`. Uses strftime()-like formatting
- // options, with the same extensions as FormatTime(), but with the
- // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f. %Ez
- // and %E*z also accept the same inputs, which (along with %z) includes
- // 'z' and 'Z' as synonyms for +00:00. %ET accepts either 'T' or 't'.
- //
- // %Y consumes as many numeric characters as it can, so the matching data
- // should always be terminated with a non-numeric. %E4Y always consumes
- // exactly four characters, including any sign.
- //
- // Unspecified fields are taken from the default date and time of ...
- //
- // "1970-01-01 00:00:00.0 +0000"
- //
- // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time
- // that represents "1970-01-01 15:45:00.0 +0000".
- //
- // Note that since ParseTime() returns time instants, it makes the most sense
- // to parse fully-specified date/time strings that include a UTC offset (%z,
- // %Ez, or %E*z).
- //
- // Note also that `absl::ParseTime()` only heeds the fields year, month, day,
- // hour, minute, (fractional) second, and UTC offset. Other fields, like
- // weekday (%a or %A), while parsed for syntactic validity, are ignored
- // in the conversion.
- //
- // Date and time fields that are out-of-range will be treated as errors
- // rather than normalizing them like `absl::CivilSecond` does. For example,
- // it is an error to parse the date "Oct 32, 2013" because 32 is out of range.
- //
- // A leap second of ":60" is normalized to ":00" of the following minute
- // with fractional seconds discarded. The following table shows how the
- // given seconds and subseconds will be parsed:
- //
- // "59.x" -> 59.x // exact
- // "60.x" -> 00.0 // normalized
- // "00.x" -> 00.x // exact
- //
- // Errors are indicated by returning false and assigning an error message
- // to the "err" out param if it is non-null.
- //
- // Note: If the input string is exactly "infinite-future", the returned
- // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned.
- // If the input string is "infinite-past", the returned `absl::Time` will be
- // `absl::InfinitePast()` and `true` will be returned.
- //
- bool ParseTime(absl::string_view format, absl::string_view input, Time* time,
- std::string* err);
- // Like ParseTime() above, but if the format string does not contain a UTC
- // offset specification (%z/%Ez/%E*z) then the input is interpreted in the
- // given TimeZone. This means that the input, by itself, does not identify a
- // unique instant. Being time-zone dependent, it also admits the possibility
- // of ambiguity or non-existence, in which case the "pre" time (as defined
- // by TimeZone::TimeInfo) is returned. For these reasons we recommend that
- // all date/time strings include a UTC offset so they're context independent.
- bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz,
- Time* time, std::string* err);
- // ============================================================================
- // Implementation Details Follow
- // ============================================================================
- namespace time_internal {
- // Creates a Duration with a given representation.
- // REQUIRES: hi,lo is a valid representation of a Duration as specified
- // in time/duration.cc.
- constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) {
- return Duration(hi, lo);
- }
- constexpr Duration MakeDuration(int64_t hi, int64_t lo) {
- return MakeDuration(hi, static_cast<uint32_t>(lo));
- }
- // Make a Duration value from a floating-point number, as long as that number
- // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as
- // it's positive and can be converted to int64_t without risk of UB.
- inline Duration MakePosDoubleDuration(double n) {
- const int64_t int_secs = static_cast<int64_t>(n);
- const uint32_t ticks = static_cast<uint32_t>(
- (n - static_cast<double>(int_secs)) * kTicksPerSecond + 0.5);
- return ticks < kTicksPerSecond
- ? MakeDuration(int_secs, ticks)
- : MakeDuration(int_secs + 1, ticks - kTicksPerSecond);
- }
- // Creates a normalized Duration from an almost-normalized (sec,ticks)
- // pair. sec may be positive or negative. ticks must be in the range
- // -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it
- // will be normalized to a positive value in the resulting Duration.
- constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) {
- return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond)
- : MakeDuration(sec, ticks);
- }
- // Provide access to the Duration representation.
- constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; }
- constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; }
- // Returns true iff d is positive or negative infinity.
- constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; }
- // Returns an infinite Duration with the opposite sign.
- // REQUIRES: IsInfiniteDuration(d)
- constexpr Duration OppositeInfinity(Duration d) {
- return GetRepHi(d) < 0
- ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)
- : MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U);
- }
- // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow.
- constexpr int64_t NegateAndSubtractOne(int64_t n) {
- // Note: Good compilers will optimize this expression to ~n when using
- // a two's-complement representation (which is required for int64_t).
- return (n < 0) ? -(n + 1) : (-n) - 1;
- }
- // Map between a Time and a Duration since the Unix epoch. Note that these
- // functions depend on the above mentioned choice of the Unix epoch for the
- // Time representation (and both need to be Time friends). Without this
- // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively.
- constexpr Time FromUnixDuration(Duration d) { return Time(d); }
- constexpr Duration ToUnixDuration(Time t) { return t.rep_; }
- template <std::intmax_t N>
- constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) {
- static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio");
- // Subsecond ratios cannot overflow.
- return MakeNormalizedDuration(
- v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);
- }
- constexpr Duration FromInt64(int64_t v, std::ratio<60>) {
- return (v <= (std::numeric_limits<int64_t>::max)() / 60 &&
- v >= (std::numeric_limits<int64_t>::min)() / 60)
- ? MakeDuration(v * 60)
- : v > 0 ? InfiniteDuration() : -InfiniteDuration();
- }
- constexpr Duration FromInt64(int64_t v, std::ratio<3600>) {
- return (v <= (std::numeric_limits<int64_t>::max)() / 3600 &&
- v >= (std::numeric_limits<int64_t>::min)() / 3600)
- ? MakeDuration(v * 3600)
- : v > 0 ? InfiniteDuration() : -InfiniteDuration();
- }
- // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is
- // valid. That is, if a T can be assigned to an int64_t without narrowing.
- template <typename T>
- constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) {
- return true;
- }
- template <typename T>
- constexpr auto IsValidRep64(char) -> bool {
- return false;
- }
- // Converts a std::chrono::duration to an absl::Duration.
- template <typename Rep, typename Period>
- constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) {
- static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
- return FromInt64(int64_t{d.count()}, Period{});
- }
- template <typename Ratio>
- int64_t ToInt64(Duration d, Ratio) {
- // Note: This may be used on MSVC, which may have a system_clock period of
- // std::ratio<1, 10 * 1000 * 1000>
- return ToInt64Seconds(d * Ratio::den / Ratio::num);
- }
- // Fastpath implementations for the 6 common duration units.
- inline int64_t ToInt64(Duration d, std::nano) {
- return ToInt64Nanoseconds(d);
- }
- inline int64_t ToInt64(Duration d, std::micro) {
- return ToInt64Microseconds(d);
- }
- inline int64_t ToInt64(Duration d, std::milli) {
- return ToInt64Milliseconds(d);
- }
- inline int64_t ToInt64(Duration d, std::ratio<1>) {
- return ToInt64Seconds(d);
- }
- inline int64_t ToInt64(Duration d, std::ratio<60>) {
- return ToInt64Minutes(d);
- }
- inline int64_t ToInt64(Duration d, std::ratio<3600>) {
- return ToInt64Hours(d);
- }
- // Converts an absl::Duration to a chrono duration of type T.
- template <typename T>
- T ToChronoDuration(Duration d) {
- using Rep = typename T::rep;
- using Period = typename T::period;
- static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
- if (time_internal::IsInfiniteDuration(d))
- return d < ZeroDuration() ? (T::min)() : (T::max)();
- const auto v = ToInt64(d, Period{});
- if (v > (std::numeric_limits<Rep>::max)()) return (T::max)();
- if (v < (std::numeric_limits<Rep>::min)()) return (T::min)();
- return T{v};
- }
- } // namespace time_internal
- constexpr Duration Nanoseconds(int64_t n) {
- return time_internal::FromInt64(n, std::nano{});
- }
- constexpr Duration Microseconds(int64_t n) {
- return time_internal::FromInt64(n, std::micro{});
- }
- constexpr Duration Milliseconds(int64_t n) {
- return time_internal::FromInt64(n, std::milli{});
- }
- constexpr Duration Seconds(int64_t n) {
- return time_internal::FromInt64(n, std::ratio<1>{});
- }
- constexpr Duration Minutes(int64_t n) {
- return time_internal::FromInt64(n, std::ratio<60>{});
- }
- constexpr Duration Hours(int64_t n) {
- return time_internal::FromInt64(n, std::ratio<3600>{});
- }
- constexpr bool operator<(Duration lhs, Duration rhs) {
- return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)
- ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs)
- : time_internal::GetRepHi(lhs) ==
- (std::numeric_limits<int64_t>::min)()
- ? time_internal::GetRepLo(lhs) + 1 <
- time_internal::GetRepLo(rhs) + 1
- : time_internal::GetRepLo(lhs) <
- time_internal::GetRepLo(rhs);
- }
- constexpr bool operator==(Duration lhs, Duration rhs) {
- return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) &&
- time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs);
- }
- constexpr Duration operator-(Duration d) {
- // This is a little interesting because of the special cases.
- //
- // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're
- // dealing with an integral number of seconds, and the only special case is
- // the maximum negative finite duration, which can't be negated.
- //
- // Infinities stay infinite, and just change direction.
- //
- // Finally we're in the case where rep_lo_ is non-zero, and we can borrow
- // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1
- // is safe).
- return time_internal::GetRepLo(d) == 0
- ? time_internal::GetRepHi(d) ==
- (std::numeric_limits<int64_t>::min)()
- ? InfiniteDuration()
- : time_internal::MakeDuration(-time_internal::GetRepHi(d))
- : time_internal::IsInfiniteDuration(d)
- ? time_internal::OppositeInfinity(d)
- : time_internal::MakeDuration(
- time_internal::NegateAndSubtractOne(
- time_internal::GetRepHi(d)),
- time_internal::kTicksPerSecond -
- time_internal::GetRepLo(d));
- }
- constexpr Duration InfiniteDuration() {
- return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),
- ~0U);
- }
- constexpr Duration FromChrono(const std::chrono::nanoseconds& d) {
- return time_internal::FromChrono(d);
- }
- constexpr Duration FromChrono(const std::chrono::microseconds& d) {
- return time_internal::FromChrono(d);
- }
- constexpr Duration FromChrono(const std::chrono::milliseconds& d) {
- return time_internal::FromChrono(d);
- }
- constexpr Duration FromChrono(const std::chrono::seconds& d) {
- return time_internal::FromChrono(d);
- }
- constexpr Duration FromChrono(const std::chrono::minutes& d) {
- return time_internal::FromChrono(d);
- }
- constexpr Duration FromChrono(const std::chrono::hours& d) {
- return time_internal::FromChrono(d);
- }
- constexpr Time FromUnixNanos(int64_t ns) {
- return time_internal::FromUnixDuration(Nanoseconds(ns));
- }
- constexpr Time FromUnixMicros(int64_t us) {
- return time_internal::FromUnixDuration(Microseconds(us));
- }
- constexpr Time FromUnixMillis(int64_t ms) {
- return time_internal::FromUnixDuration(Milliseconds(ms));
- }
- constexpr Time FromUnixSeconds(int64_t s) {
- return time_internal::FromUnixDuration(Seconds(s));
- }
- constexpr Time FromTimeT(time_t t) {
- return time_internal::FromUnixDuration(Seconds(t));
- }
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_TIME_TIME_H_
|