123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: distributions.h
- // -----------------------------------------------------------------------------
- //
- // This header defines functions representing distributions, which you use in
- // combination with an Abseil random bit generator to produce random values
- // according to the rules of that distribution.
- //
- // The Abseil random library defines the following distributions within this
- // file:
- //
- // * `absl::Uniform` for uniform (constant) distributions having constant
- // probability
- // * `absl::Bernoulli` for discrete distributions having exactly two outcomes
- // * `absl::Beta` for continuous distributions parameterized through two
- // free parameters
- // * `absl::Exponential` for discrete distributions of events occurring
- // continuously and independently at a constant average rate
- // * `absl::Gaussian` (also known as "normal distributions") for continuous
- // distributions using an associated quadratic function
- // * `absl::LogUniform` for continuous uniform distributions where the log
- // to the given base of all values is uniform
- // * `absl::Poisson` for discrete probability distributions that express the
- // probability of a given number of events occurring within a fixed interval
- // * `absl::Zipf` for discrete probability distributions commonly used for
- // modelling of rare events
- //
- // Prefer use of these distribution function classes over manual construction of
- // your own distribution classes, as it allows library maintainers greater
- // flexibility to change the underlying implementation in the future.
- #ifndef ABSL_RANDOM_DISTRIBUTIONS_H_
- #define ABSL_RANDOM_DISTRIBUTIONS_H_
- #include <algorithm>
- #include <cmath>
- #include <limits>
- #include <random>
- #include <type_traits>
- #include "absl/base/internal/inline_variable.h"
- #include "absl/random/bernoulli_distribution.h"
- #include "absl/random/beta_distribution.h"
- #include "absl/random/exponential_distribution.h"
- #include "absl/random/gaussian_distribution.h"
- #include "absl/random/internal/distribution_caller.h" // IWYU pragma: export
- #include "absl/random/internal/uniform_helper.h" // IWYU pragma: export
- #include "absl/random/log_uniform_int_distribution.h"
- #include "absl/random/poisson_distribution.h"
- #include "absl/random/uniform_int_distribution.h"
- #include "absl/random/uniform_real_distribution.h"
- #include "absl/random/zipf_distribution.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosedClosed,
- {});
- ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosed, {});
- ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedOpenTag, IntervalClosedOpen, {});
- ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpenOpen, {});
- ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpen, {});
- ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenClosedTag, IntervalOpenClosed, {});
- // -----------------------------------------------------------------------------
- // absl::Uniform<T>(tag, bitgen, lo, hi)
- // -----------------------------------------------------------------------------
- //
- // `absl::Uniform()` produces random values of type `T` uniformly distributed in
- // a defined interval {lo, hi}. The interval `tag` defines the type of interval
- // which should be one of the following possible values:
- //
- // * `absl::IntervalOpenOpen`
- // * `absl::IntervalOpenClosed`
- // * `absl::IntervalClosedOpen`
- // * `absl::IntervalClosedClosed`
- //
- // where "open" refers to an exclusive value (excluded) from the output, while
- // "closed" refers to an inclusive value (included) from the output.
- //
- // In the absence of an explicit return type `T`, `absl::Uniform()` will deduce
- // the return type based on the provided endpoint arguments {A lo, B hi}.
- // Given these endpoints, one of {A, B} will be chosen as the return type, if
- // a type can be implicitly converted into the other in a lossless way. The
- // lack of any such implicit conversion between {A, B} will produce a
- // compile-time error
- //
- // See https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
- //
- // Example:
- //
- // absl::BitGen bitgen;
- //
- // // Produce a random float value between 0.0 and 1.0, inclusive
- // auto x = absl::Uniform(absl::IntervalClosedClosed, bitgen, 0.0f, 1.0f);
- //
- // // The most common interval of `absl::IntervalClosedOpen` is available by
- // // default:
- //
- // auto x = absl::Uniform(bitgen, 0.0f, 1.0f);
- //
- // // Return-types are typically inferred from the arguments, however callers
- // // can optionally provide an explicit return-type to the template.
- //
- // auto x = absl::Uniform<float>(bitgen, 0, 1);
- //
- template <typename R = void, typename TagType, typename URBG>
- typename absl::enable_if_t<!std::is_same<R, void>::value, R> //
- Uniform(TagType tag,
- URBG&& urbg, // NOLINT(runtime/references)
- R lo, R hi) {
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = random_internal::UniformDistributionWrapper<R>;
- auto a = random_internal::uniform_lower_bound(tag, lo, hi);
- auto b = random_internal::uniform_upper_bound(tag, lo, hi);
- if (!random_internal::is_uniform_range_valid(a, b)) return lo;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, tag, lo, hi);
- }
- // absl::Uniform<T>(bitgen, lo, hi)
- //
- // Overload of `Uniform()` using the default closed-open interval of [lo, hi),
- // and returning values of type `T`
- template <typename R = void, typename URBG>
- typename absl::enable_if_t<!std::is_same<R, void>::value, R> //
- Uniform(URBG&& urbg, // NOLINT(runtime/references)
- R lo, R hi) {
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = random_internal::UniformDistributionWrapper<R>;
- constexpr auto tag = absl::IntervalClosedOpen;
- auto a = random_internal::uniform_lower_bound(tag, lo, hi);
- auto b = random_internal::uniform_upper_bound(tag, lo, hi);
- if (!random_internal::is_uniform_range_valid(a, b)) return lo;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, lo, hi);
- }
- // absl::Uniform(tag, bitgen, lo, hi)
- //
- // Overload of `Uniform()` using different (but compatible) lo, hi types. Note
- // that a compile-error will result if the return type cannot be deduced
- // correctly from the passed types.
- template <typename R = void, typename TagType, typename URBG, typename A,
- typename B>
- typename absl::enable_if_t<std::is_same<R, void>::value,
- random_internal::uniform_inferred_return_t<A, B>>
- Uniform(TagType tag,
- URBG&& urbg, // NOLINT(runtime/references)
- A lo, B hi) {
- using gen_t = absl::decay_t<URBG>;
- using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
- using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
- auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
- auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
- if (!random_internal::is_uniform_range_valid(a, b)) return lo;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, tag, static_cast<return_t>(lo),
- static_cast<return_t>(hi));
- }
- // absl::Uniform(bitgen, lo, hi)
- //
- // Overload of `Uniform()` using different (but compatible) lo, hi types and the
- // default closed-open interval of [lo, hi). Note that a compile-error will
- // result if the return type cannot be deduced correctly from the passed types.
- template <typename R = void, typename URBG, typename A, typename B>
- typename absl::enable_if_t<std::is_same<R, void>::value,
- random_internal::uniform_inferred_return_t<A, B>>
- Uniform(URBG&& urbg, // NOLINT(runtime/references)
- A lo, B hi) {
- using gen_t = absl::decay_t<URBG>;
- using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
- using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
- constexpr auto tag = absl::IntervalClosedOpen;
- auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
- auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
- if (!random_internal::is_uniform_range_valid(a, b)) return lo;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, static_cast<return_t>(lo),
- static_cast<return_t>(hi));
- }
- // absl::Uniform<unsigned T>(bitgen)
- //
- // Overload of Uniform() using the minimum and maximum values of a given type
- // `T` (which must be unsigned), returning a value of type `unsigned T`
- template <typename R, typename URBG>
- typename absl::enable_if_t<!std::is_signed<R>::value, R> //
- Uniform(URBG&& urbg) { // NOLINT(runtime/references)
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = random_internal::UniformDistributionWrapper<R>;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg);
- }
- // -----------------------------------------------------------------------------
- // absl::Bernoulli(bitgen, p)
- // -----------------------------------------------------------------------------
- //
- // `absl::Bernoulli` produces a random boolean value, with probability `p`
- // (where 0.0 <= p <= 1.0) equaling `true`.
- //
- // Prefer `absl::Bernoulli` to produce boolean values over other alternatives
- // such as comparing an `absl::Uniform()` value to a specific output.
- //
- // See https://en.wikipedia.org/wiki/Bernoulli_distribution
- //
- // Example:
- //
- // absl::BitGen bitgen;
- // ...
- // if (absl::Bernoulli(bitgen, 1.0/3721.0)) {
- // std::cout << "Asteroid field navigation successful.";
- // }
- //
- template <typename URBG>
- bool Bernoulli(URBG&& urbg, // NOLINT(runtime/references)
- double p) {
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = absl::bernoulli_distribution;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, p);
- }
- // -----------------------------------------------------------------------------
- // absl::Beta<T>(bitgen, alpha, beta)
- // -----------------------------------------------------------------------------
- //
- // `absl::Beta` produces a floating point number distributed in the closed
- // interval [0,1] and parameterized by two values `alpha` and `beta` as per a
- // Beta distribution. `T` must be a floating point type, but may be inferred
- // from the types of `alpha` and `beta`.
- //
- // See https://en.wikipedia.org/wiki/Beta_distribution.
- //
- // Example:
- //
- // absl::BitGen bitgen;
- // ...
- // double sample = absl::Beta(bitgen, 3.0, 2.0);
- //
- template <typename RealType, typename URBG>
- RealType Beta(URBG&& urbg, // NOLINT(runtime/references)
- RealType alpha, RealType beta) {
- static_assert(
- std::is_floating_point<RealType>::value,
- "Template-argument 'RealType' must be a floating-point type, in "
- "absl::Beta<RealType, URBG>(...)");
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = typename absl::beta_distribution<RealType>;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, alpha, beta);
- }
- // -----------------------------------------------------------------------------
- // absl::Exponential<T>(bitgen, lambda = 1)
- // -----------------------------------------------------------------------------
- //
- // `absl::Exponential` produces a floating point number representing the
- // distance (time) between two consecutive events in a point process of events
- // occurring continuously and independently at a constant average rate. `T` must
- // be a floating point type, but may be inferred from the type of `lambda`.
- //
- // See https://en.wikipedia.org/wiki/Exponential_distribution.
- //
- // Example:
- //
- // absl::BitGen bitgen;
- // ...
- // double call_length = absl::Exponential(bitgen, 7.0);
- //
- template <typename RealType, typename URBG>
- RealType Exponential(URBG&& urbg, // NOLINT(runtime/references)
- RealType lambda = 1) {
- static_assert(
- std::is_floating_point<RealType>::value,
- "Template-argument 'RealType' must be a floating-point type, in "
- "absl::Exponential<RealType, URBG>(...)");
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = typename absl::exponential_distribution<RealType>;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, lambda);
- }
- // -----------------------------------------------------------------------------
- // absl::Gaussian<T>(bitgen, mean = 0, stddev = 1)
- // -----------------------------------------------------------------------------
- //
- // `absl::Gaussian` produces a floating point number selected from the Gaussian
- // (ie. "Normal") distribution. `T` must be a floating point type, but may be
- // inferred from the types of `mean` and `stddev`.
- //
- // See https://en.wikipedia.org/wiki/Normal_distribution
- //
- // Example:
- //
- // absl::BitGen bitgen;
- // ...
- // double giraffe_height = absl::Gaussian(bitgen, 16.3, 3.3);
- //
- template <typename RealType, typename URBG>
- RealType Gaussian(URBG&& urbg, // NOLINT(runtime/references)
- RealType mean = 0, RealType stddev = 1) {
- static_assert(
- std::is_floating_point<RealType>::value,
- "Template-argument 'RealType' must be a floating-point type, in "
- "absl::Gaussian<RealType, URBG>(...)");
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = typename absl::gaussian_distribution<RealType>;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, mean, stddev);
- }
- // -----------------------------------------------------------------------------
- // absl::LogUniform<T>(bitgen, lo, hi, base = 2)
- // -----------------------------------------------------------------------------
- //
- // `absl::LogUniform` produces random values distributed where the log to a
- // given base of all values is uniform in a closed interval [lo, hi]. `T` must
- // be an integral type, but may be inferred from the types of `lo` and `hi`.
- //
- // I.e., `LogUniform(0, n, b)` is uniformly distributed across buckets
- // [0], [1, b-1], [b, b^2-1] .. [b^(k-1), (b^k)-1] .. [b^floor(log(n, b)), n]
- // and is uniformly distributed within each bucket.
- //
- // The resulting probability density is inversely related to bucket size, though
- // values in the final bucket may be more likely than previous values. (In the
- // extreme case where n = b^i the final value will be tied with zero as the most
- // probable result.
- //
- // If `lo` is nonzero then this distribution is shifted to the desired interval,
- // so LogUniform(lo, hi, b) is equivalent to LogUniform(0, hi-lo, b)+lo.
- //
- // See http://ecolego.facilia.se/ecolego/show/Log-Uniform%20Distribution
- //
- // Example:
- //
- // absl::BitGen bitgen;
- // ...
- // int v = absl::LogUniform(bitgen, 0, 1000);
- //
- template <typename IntType, typename URBG>
- IntType LogUniform(URBG&& urbg, // NOLINT(runtime/references)
- IntType lo, IntType hi, IntType base = 2) {
- static_assert(std::is_integral<IntType>::value,
- "Template-argument 'IntType' must be an integral type, in "
- "absl::LogUniform<IntType, URBG>(...)");
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = typename absl::log_uniform_int_distribution<IntType>;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, lo, hi, base);
- }
- // -----------------------------------------------------------------------------
- // absl::Poisson<T>(bitgen, mean = 1)
- // -----------------------------------------------------------------------------
- //
- // `absl::Poisson` produces discrete probabilities for a given number of events
- // occurring within a fixed interval within the closed interval [0, max]. `T`
- // must be an integral type.
- //
- // See https://en.wikipedia.org/wiki/Poisson_distribution
- //
- // Example:
- //
- // absl::BitGen bitgen;
- // ...
- // int requests_per_minute = absl::Poisson<int>(bitgen, 3.2);
- //
- template <typename IntType, typename URBG>
- IntType Poisson(URBG&& urbg, // NOLINT(runtime/references)
- double mean = 1.0) {
- static_assert(std::is_integral<IntType>::value,
- "Template-argument 'IntType' must be an integral type, in "
- "absl::Poisson<IntType, URBG>(...)");
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = typename absl::poisson_distribution<IntType>;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, mean);
- }
- // -----------------------------------------------------------------------------
- // absl::Zipf<T>(bitgen, hi = max, q = 2, v = 1)
- // -----------------------------------------------------------------------------
- //
- // `absl::Zipf` produces discrete probabilities commonly used for modelling of
- // rare events over the closed interval [0, hi]. The parameters `v` and `q`
- // determine the skew of the distribution. `T` must be an integral type, but
- // may be inferred from the type of `hi`.
- //
- // See http://mathworld.wolfram.com/ZipfDistribution.html
- //
- // Example:
- //
- // absl::BitGen bitgen;
- // ...
- // int term_rank = absl::Zipf<int>(bitgen);
- //
- template <typename IntType, typename URBG>
- IntType Zipf(URBG&& urbg, // NOLINT(runtime/references)
- IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0,
- double v = 1.0) {
- static_assert(std::is_integral<IntType>::value,
- "Template-argument 'IntType' must be an integral type, in "
- "absl::Zipf<IntType, URBG>(...)");
- using gen_t = absl::decay_t<URBG>;
- using distribution_t = typename absl::zipf_distribution<IntType>;
- return random_internal::DistributionCaller<gen_t>::template Call<
- distribution_t>(&urbg, hi, q, v);
- }
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_RANDOM_DISTRIBUTIONS_H_
|