123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- /*
- * Copyright Nick Thompson, 2019
- * Copyright Matt Borland, 2021
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_STATISTICS_LINEAR_REGRESSION_HPP
- #define BOOST_MATH_STATISTICS_LINEAR_REGRESSION_HPP
- #include <cmath>
- #include <algorithm>
- #include <utility>
- #include <tuple>
- #include <stdexcept>
- #include <type_traits>
- #include <boost/math/statistics/univariate_statistics.hpp>
- #include <boost/math/statistics/bivariate_statistics.hpp>
- namespace boost { namespace math { namespace statistics { namespace detail {
- template<class ReturnType, class RandomAccessContainer>
- ReturnType simple_ordinary_least_squares_impl(RandomAccessContainer const & x,
- RandomAccessContainer const & y)
- {
- using Real = typename std::tuple_element<0, ReturnType>::type;
- if (x.size() <= 1)
- {
- throw std::domain_error("At least 2 samples are required to perform a linear regression.");
- }
- if (x.size() != y.size())
- {
- throw std::domain_error("The same number of samples must be in the independent and dependent variable.");
- }
- std::tuple<Real, Real, Real> temp = boost::math::statistics::means_and_covariance(x, y);
- Real mu_x = std::get<0>(temp);
- Real mu_y = std::get<1>(temp);
- Real cov_xy = std::get<2>(temp);
- Real var_x = boost::math::statistics::variance(x);
- if (var_x <= 0) {
- throw std::domain_error("Independent variable has no variance; this breaks linear regression.");
- }
- Real c1 = cov_xy/var_x;
- Real c0 = mu_y - c1*mu_x;
- return std::make_pair(c0, c1);
- }
- template<class ReturnType, class RandomAccessContainer>
- ReturnType simple_ordinary_least_squares_with_R_squared_impl(RandomAccessContainer const & x,
- RandomAccessContainer const & y)
- {
- using Real = typename std::tuple_element<0, ReturnType>::type;
- if (x.size() <= 1)
- {
- throw std::domain_error("At least 2 samples are required to perform a linear regression.");
- }
- if (x.size() != y.size())
- {
- throw std::domain_error("The same number of samples must be in the independent and dependent variable.");
- }
- std::tuple<Real, Real, Real> temp = boost::math::statistics::means_and_covariance(x, y);
- Real mu_x = std::get<0>(temp);
- Real mu_y = std::get<1>(temp);
- Real cov_xy = std::get<2>(temp);
- Real var_x = boost::math::statistics::variance(x);
- if (var_x <= 0) {
- throw std::domain_error("Independent variable has no variance; this breaks linear regression.");
- }
- Real c1 = cov_xy/var_x;
- Real c0 = mu_y - c1*mu_x;
- Real squared_residuals = 0;
- Real squared_mean_deviation = 0;
- for(decltype(y.size()) i = 0; i < y.size(); ++i) {
- squared_mean_deviation += (y[i] - mu_y)*(y[i]-mu_y);
- Real ei = (c0 + c1*x[i]) - y[i];
- squared_residuals += ei*ei;
- }
- Real Rsquared;
- if (squared_mean_deviation == 0) {
- // Then y = constant, so the linear regression is perfect.
- Rsquared = 1;
- } else {
- Rsquared = 1 - squared_residuals/squared_mean_deviation;
- }
- return std::make_tuple(c0, c1, Rsquared);
- }
- } // namespace detail
- template<typename RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- typename std::enable_if<std::is_integral<Real>::value, bool>::type = true>
- inline auto simple_ordinary_least_squares(RandomAccessContainer const & x, RandomAccessContainer const & y) -> std::pair<double, double>
- {
- return detail::simple_ordinary_least_squares_impl<std::pair<double, double>>(x, y);
- }
- template<typename RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- typename std::enable_if<!std::is_integral<Real>::value, bool>::type = true>
- inline auto simple_ordinary_least_squares(RandomAccessContainer const & x, RandomAccessContainer const & y) -> std::pair<Real, Real>
- {
- return detail::simple_ordinary_least_squares_impl<std::pair<Real, Real>>(x, y);
- }
- template<typename RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- typename std::enable_if<std::is_integral<Real>::value, bool>::type = true>
- inline auto simple_ordinary_least_squares_with_R_squared(RandomAccessContainer const & x, RandomAccessContainer const & y) -> std::tuple<double, double, double>
- {
- return detail::simple_ordinary_least_squares_with_R_squared_impl<std::tuple<double, double, double>>(x, y);
- }
- template<typename RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- typename std::enable_if<!std::is_integral<Real>::value, bool>::type = true>
- inline auto simple_ordinary_least_squares_with_R_squared(RandomAccessContainer const & x, RandomAccessContainer const & y) -> std::tuple<Real, Real, Real>
- {
- return detail::simple_ordinary_least_squares_with_R_squared_impl<std::tuple<Real, Real, Real>>(x, y);
- }
- }}} // namespace boost::math::statistics
- #endif
|