123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- /*
- * Copyright Nick Thompson, 2019
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_STATISTICS_ANDERSON_DARLING_HPP
- #define BOOST_MATH_STATISTICS_ANDERSON_DARLING_HPP
- #include <cmath>
- #include <algorithm>
- #include <boost/math/statistics/univariate_statistics.hpp>
- #include <boost/math/special_functions/erf.hpp>
- namespace boost { namespace math { namespace statistics {
- template<class RandomAccessContainer>
- auto anderson_darling_normality_statistic(RandomAccessContainer const & v,
- typename RandomAccessContainer::value_type mu = std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN(),
- typename RandomAccessContainer::value_type sd = std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
- {
- using Real = typename RandomAccessContainer::value_type;
- using std::log;
- using std::sqrt;
- using boost::math::erfc;
- if (std::isnan(mu)) {
- mu = boost::math::statistics::mean(v);
- }
- if (std::isnan(sd)) {
- sd = sqrt(boost::math::statistics::sample_variance(v));
- }
- typedef boost::math::policies::policy<
- boost::math::policies::promote_float<false>,
- boost::math::policies::promote_double<false> >
- no_promote_policy;
- // This is where Knuth's literate programming could really come in handy!
- // I need some LaTeX. The idea is that before any observation, the ecdf is identically zero.
- // So we need to compute:
- // \int_{-\infty}^{v_0} \frac{F(x)F'(x)}{1- F(x)} \, \mathrm{d}x, where F(x) := \frac{1}{2}[1+\erf(\frac{x-\mu}{\sigma \sqrt{2}})]
- // Astonishingly, there is an analytic evaluation to this integral, as you can validate with the following Mathematica command:
- // Integrate[(1/2 (1 + Erf[(x - mu)/Sqrt[2*sigma^2]])*Exp[-(x - mu)^2/(2*sigma^2)]*1/Sqrt[2*\[Pi]*sigma^2])/(1 - 1/2 (1 + Erf[(x - mu)/Sqrt[2*sigma^2]])),
- // {x, -Infinity, x0}, Assumptions -> {x0 \[Element] Reals && mu \[Element] Reals && sigma > 0}]
- // This gives (for s = x-mu/sqrt(2sigma^2))
- // -1/2 + erf(s) + log(2/(1+erf(s)))
- Real inv_var_scale = 1/(sd*sqrt(Real(2)));
- Real s0 = (v[0] - mu)*inv_var_scale;
- Real erfcs0 = erfc(s0, no_promote_policy());
- // Note that if erfcs0 == 0, then left_tail = inf (numerically), and hence the entire integral is numerically infinite:
- if (erfcs0 <= 0) {
- return std::numeric_limits<Real>::infinity();
- }
- // Note that we're going to add erfcs0/2 when we compute the integral over [x_0, x_1], so drop it here:
- Real left_tail = -1 + log(Real(2));
- // For the right tail, the ecdf is identically 1.
- // Hence we need the integral:
- // \int_{v_{n-1}}^{\infty} \frac{(1-F(x))F'(x)}{F(x)} \, \mathrm{d}x
- // This also has an analytic evaluation! It can be found via the following Mathematica command:
- // Integrate[(E^(-(z^2/2)) *(1 - 1/2 (1 + Erf[z/Sqrt[2]])))/(Sqrt[2 \[Pi]] (1/2 (1 + Erf[z/Sqrt[2]]))),
- // {z, zn, \[Infinity]}, Assumptions -> {zn \[Element] Reals && mu \[Element] Reals}]
- // This gives (for sf = xf-mu/sqrt(2sigma^2))
- // -1/2 + erf(sf)/2 + 2log(2/(1+erf(sf)))
- Real sf = (v[v.size()-1] - mu)*inv_var_scale;
- //Real erfcsf = erfc<Real>(sf, no_promote_policy());
- // This is the actual value of the tail integral. However, the -erfcsf/2 cancels from the integral over [v_{n-2}, v_{n-1}]:
- //Real right_tail = -erfcsf/2 + log(Real(2)) - log(2-erfcsf);
- // Use erfc(-x) = 2 - erfc(x)
- Real erfcmsf = erfc<Real>(-sf, no_promote_policy());
- // Again if this is precisely zero then the integral is numerically infinite:
- if (erfcmsf == 0) {
- return std::numeric_limits<Real>::infinity();
- }
- Real right_tail = log(2/erfcmsf);
- // Now we need each integral:
- // \int_{v_i}^{v_{i+1}} \frac{(i+1/n - F(x))^2F'(x)}{F(x)(1-F(x))} \, \mathrm{d}x
- // Again we get an analytical evaluation via the following Mathematica command:
- // Integrate[((E^(-(z^2/2))/Sqrt[2 \[Pi]])*(k1 - F[z])^2)/(F[z]*(1 - F[z])),
- // {z, z1, z2}, Assumptions -> {z1 \[Element] Reals && z2 \[Element] Reals &&k1 \[Element] Reals}] // FullSimplify
- Real integrals = 0;
- int64_t N = v.size();
- for (int64_t i = 0; i < N - 1; ++i) {
- if (v[i] > v[i+1]) {
- throw std::domain_error("Input data must be sorted in increasing order v[0] <= v[1] <= . . . <= v[n-1]");
- }
- Real k = (i+1)/Real(N);
- Real s1 = (v[i+1]-mu)*inv_var_scale;
- Real erfcs1 = erfc<Real>(s1, no_promote_policy());
- Real term = k*(k*log(erfcs0*(-2 + erfcs1)/(erfcs1*(-2 + erfcs0))) + 2*log(erfcs1/erfcs0));
- integrals += term;
- s0 = s1;
- erfcs0 = erfcs1;
- }
- integrals -= log(erfcs0);
- return v.size()*(left_tail + right_tail + integrals);
- }
- }}}
- #endif
|