1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090 |
- // Copyright Benjamin Sobotta 2012
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_OWENS_T_HPP
- #define BOOST_OWENS_T_HPP
- // Reference:
- // Mike Patefield, David Tandy
- // FAST AND ACCURATE CALCULATION OF OWEN'S T-FUNCTION
- // Journal of Statistical Software, 5 (5), 1-25
- #ifdef _MSC_VER
- # pragma once
- #endif
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/config/no_tr1/cmath.hpp>
- #include <boost/math/special_functions/erf.hpp>
- #include <boost/math/special_functions/expm1.hpp>
- #include <boost/throw_exception.hpp>
- #include <boost/assert.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/tools/big_constant.hpp>
- #include <stdexcept>
- #ifdef BOOST_MSVC
- #pragma warning(push)
- #pragma warning(disable:4127)
- #endif
- #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
- //
- // This is the only way we can avoid
- // warning: non-standard suffix on floating constant [-Wpedantic]
- // when building with -Wall -pedantic. Neither __extension__
- // nor #pragma diagnostic ignored work :(
- //
- #pragma GCC system_header
- #endif
- namespace boost
- {
- namespace math
- {
- namespace detail
- {
- // owens_t_znorm1(x) = P(-oo<Z<=x)-0.5 with Z being normally distributed.
- template<typename RealType, class Policy>
- inline RealType owens_t_znorm1(const RealType x, const Policy& pol)
- {
- using namespace boost::math::constants;
- return boost::math::erf(x*one_div_root_two<RealType>(), pol)*half<RealType>();
- } // RealType owens_t_znorm1(const RealType x)
- // owens_t_znorm2(x) = P(x<=Z<oo) with Z being normally distributed.
- template<typename RealType, class Policy>
- inline RealType owens_t_znorm2(const RealType x, const Policy& pol)
- {
- using namespace boost::math::constants;
- return boost::math::erfc(x*one_div_root_two<RealType>(), pol)*half<RealType>();
- } // RealType owens_t_znorm2(const RealType x)
- // Auxiliary function, it computes an array key that is used to determine
- // the specific computation method for Owen's T and the order thereof
- // used in owens_t_dispatch.
- template<typename RealType>
- inline unsigned short owens_t_compute_code(const RealType h, const RealType a)
- {
- static const RealType hrange[] =
- { 0.02f, 0.06f, 0.09f, 0.125f, 0.26f, 0.4f, 0.6f, 1.6f, 1.7f, 2.33f, 2.4f, 3.36f, 3.4f, 4.8f };
- static const RealType arange[] = { 0.025f, 0.09f, 0.15f, 0.36f, 0.5f, 0.9f, 0.99999f };
- /*
- original select array from paper:
- 1, 1, 2,13,13,13,13,13,13,13,13,16,16,16, 9
- 1, 2, 2, 3, 3, 5, 5,14,14,15,15,16,16,16, 9
- 2, 2, 3, 3, 3, 5, 5,15,15,15,15,16,16,16,10
- 2, 2, 3, 5, 5, 5, 5, 7, 7,16,16,16,16,16,10
- 2, 3, 3, 5, 5, 6, 6, 8, 8,17,17,17,12,12,11
- 2, 3, 5, 5, 5, 6, 6, 8, 8,17,17,17,12,12,12
- 2, 3, 4, 4, 6, 6, 8, 8,17,17,17,17,17,12,12
- 2, 3, 4, 4, 6, 6,18,18,18,18,17,17,17,12,12
- */
- // subtract one because the array is written in FORTRAN in mind - in C arrays start @ zero
- static const unsigned short select[] =
- {
- 0, 0 , 1 , 12 ,12 , 12 , 12 , 12 , 12 , 12 , 12 , 15 , 15 , 15 , 8,
- 0 , 1 , 1 , 2 , 2 , 4 , 4 , 13 , 13 , 14 , 14 , 15 , 15 , 15 , 8,
- 1 , 1 , 2 , 2 , 2 , 4 , 4 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 9,
- 1 , 1 , 2 , 4 , 4 , 4 , 4 , 6 , 6 , 15 , 15 , 15 , 15 , 15 , 9,
- 1 , 2 , 2 , 4 , 4 , 5 , 5 , 7 , 7 , 16 ,16 , 16 , 11 , 11 , 10,
- 1 , 2 , 4 , 4 , 4 , 5 , 5 , 7 , 7 , 16 , 16 , 16 , 11 , 11 , 11,
- 1 , 2 , 3 , 3 , 5 , 5 , 7 , 7 , 16 , 16 , 16 , 16 , 16 , 11 , 11,
- 1 , 2 , 3 , 3 , 5 , 5 , 17 , 17 , 17 , 17 , 16 , 16 , 16 , 11 , 11
- };
- unsigned short ihint = 14, iaint = 7;
- for(unsigned short i = 0; i != 14; i++)
- {
- if( h <= hrange[i] )
- {
- ihint = i;
- break;
- }
- } // for(unsigned short i = 0; i != 14; i++)
- for(unsigned short i = 0; i != 7; i++)
- {
- if( a <= arange[i] )
- {
- iaint = i;
- break;
- }
- } // for(unsigned short i = 0; i != 7; i++)
- // interpret select array as 8x15 matrix
- return select[iaint*15 + ihint];
- } // unsigned short owens_t_compute_code(const RealType h, const RealType a)
- template<typename RealType>
- inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const std::integral_constant<int, 53>&)
- {
- static const unsigned short ord[] = {2, 3, 4, 5, 7, 10, 12, 18, 10, 20, 30, 0, 4, 7, 8, 20, 0, 0}; // 18 entries
- BOOST_ASSERT(icode<18);
- return ord[icode];
- } // unsigned short owens_t_get_order(const unsigned short icode, RealType, std::integral_constant<int, 53> const&)
- template<typename RealType>
- inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const std::integral_constant<int, 64>&)
- {
- // method ================>>> {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6}
- static const unsigned short ord[] = {3, 4, 5, 6, 8, 11, 13, 19, 10, 20, 30, 0, 7, 10, 11, 23, 0, 0}; // 18 entries
- BOOST_ASSERT(icode<18);
- return ord[icode];
- } // unsigned short owens_t_get_order(const unsigned short icode, RealType, std::integral_constant<int, 64> const&)
- template<typename RealType, typename Policy>
- inline unsigned short owens_t_get_order(const unsigned short icode, RealType r, const Policy&)
- {
- typedef typename policies::precision<RealType, Policy>::type precision_type;
- typedef std::integral_constant<int,
- precision_type::value <= 0 ? 64 :
- precision_type::value <= 53 ? 53 : 64
- > tag_type;
- return owens_t_get_order_imp(icode, r, tag_type());
- }
- // compute the value of Owen's T function with method T1 from the reference paper
- template<typename RealType, typename Policy>
- inline RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
- const RealType hs = -h*h*half<RealType>();
- const RealType dhs = exp( hs );
- const RealType as = a*a;
- unsigned short j=1;
- RealType jj = 1;
- RealType aj = a * one_div_two_pi<RealType>();
- RealType dj = boost::math::expm1( hs, pol);
- RealType gj = hs*dhs;
- RealType val = atan( a ) * one_div_two_pi<RealType>();
- while( true )
- {
- val += dj*aj/jj;
- if( m <= j )
- break;
- j++;
- jj += static_cast<RealType>(2);
- aj *= as;
- dj = gj - dj;
- gj *= hs / static_cast<RealType>(j);
- } // while( true )
- return val;
- } // RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m)
- // compute the value of Owen's T function with method T2 from the reference paper
- template<typename RealType, class Policy>
- inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy& pol, const std::false_type&)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
- const unsigned short maxii = m+m+1;
- const RealType hs = h*h;
- const RealType as = -a*a;
- const RealType y = static_cast<RealType>(1) / hs;
- unsigned short ii = 1;
- RealType val = 0;
- RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
- RealType z = owens_t_znorm1(ah, pol)/h;
- while( true )
- {
- val += z;
- if( maxii <= ii )
- {
- val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
- break;
- } // if( maxii <= ii )
- z = y * ( vi - static_cast<RealType>(ii) * z );
- vi *= as;
- ii += 2;
- } // while( true )
- return val;
- } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah)
- // compute the value of Owen's T function with method T3 from the reference paper
- template<typename RealType, class Policy>
- inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const std::integral_constant<int, 53>&, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
- const unsigned short m = 20;
- static const RealType c2[] =
- {
- static_cast<RealType>(0.99999999999999987510),
- static_cast<RealType>(-0.99999999999988796462), static_cast<RealType>(0.99999999998290743652),
- static_cast<RealType>(-0.99999999896282500134), static_cast<RealType>(0.99999996660459362918),
- static_cast<RealType>(-0.99999933986272476760), static_cast<RealType>(0.99999125611136965852),
- static_cast<RealType>(-0.99991777624463387686), static_cast<RealType>(0.99942835555870132569),
- static_cast<RealType>(-0.99697311720723000295), static_cast<RealType>(0.98751448037275303682),
- static_cast<RealType>(-0.95915857980572882813), static_cast<RealType>(0.89246305511006708555),
- static_cast<RealType>(-0.76893425990463999675), static_cast<RealType>(0.58893528468484693250),
- static_cast<RealType>(-0.38380345160440256652), static_cast<RealType>(0.20317601701045299653),
- static_cast<RealType>(-0.82813631607004984866E-01), static_cast<RealType>(0.24167984735759576523E-01),
- static_cast<RealType>(-0.44676566663971825242E-02), static_cast<RealType>(0.39141169402373836468E-03)
- };
- const RealType as = a*a;
- const RealType hs = h*h;
- const RealType y = static_cast<RealType>(1)/hs;
- RealType ii = 1;
- unsigned short i = 0;
- RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
- RealType zi = owens_t_znorm1(ah, pol)/h;
- RealType val = 0;
- while( true )
- {
- BOOST_ASSERT(i < 21);
- val += zi*c2[i];
- if( m <= i ) // if( m < i+1 )
- {
- val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
- break;
- } // if( m < i )
- zi = y * (ii*zi - vi);
- vi *= as;
- ii += 2;
- i++;
- } // while( true )
- return val;
- } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah)
- // compute the value of Owen's T function with method T3 from the reference paper
- template<class RealType, class Policy>
- inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const std::integral_constant<int, 64>&, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
-
- const unsigned short m = 30;
- static const RealType c2[] =
- {
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999999999729978162447266851932041876728736094298092917625009873),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99999999999999999999467056379678391810626533251885323416799874878563998732905968),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999824849349313270659391127814689133077036298754586814091034842536),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999999997703859616213643405880166422891953033591551179153879839440241685),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999998394883415238173334565554173013941245103172035286759201504179038147),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999993063616095509371081203145247992197457263066869044528823599399470977),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999999797336340409464429599229870590160411238245275855903767652432017766116267),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999999999574958412069046680119051639753412378037565521359444170241346845522403274),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999933226234193375324943920160947158239076786103108097456617750134812033362048),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999188923242461073033481053037468263536806742737922476636768006622772762168467),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999992195143483674402853783549420883055129680082932629160081128947764415749728967),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999993935137206712830997921913316971472227199741857386575097250553105958772041501),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99996135597690552745362392866517133091672395614263398912807169603795088421057688716),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99979556366513946026406788969630293820987757758641211293079784585126692672425362469),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.999092789629617100153486251423850590051366661947344315423226082520411961968929483),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.996593837411918202119308620432614600338157335862888580671450938858935084316004769854),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.98910017138386127038463510314625339359073956513420458166238478926511821146316469589567),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.970078558040693314521331982203762771512160168582494513347846407314584943870399016019),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.92911438683263187495758525500033707204091967947532160289872782771388170647150321633673),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.8542058695956156057286980736842905011429254735181323743367879525470479126968822863),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.73796526033030091233118357742803709382964420335559408722681794195743240930748630755),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.58523469882837394570128599003785154144164680587615878645171632791404210655891158),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.415997776145676306165661663581868460503874205343014196580122174949645271353372263),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.2588210875241943574388730510317252236407805082485246378222935376279663808416534365),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.1375535825163892648504646951500265585055789019410617565727090346559210218472356689),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.0607952766325955730493900985022020434830339794955745989150270485056436844239206648),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0216337683299871528059836483840390514275488679530797294557060229266785853764115),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.00593405693455186729876995814181203900550014220428843483927218267309209471516256),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0011743414818332946510474576182739210553333860106811865963485870668929503649964142),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, -1.489155613350368934073453260689881330166342484405529981510694514036264969925132e-4),
- BOOST_MATH_BIG_CONSTANT(RealType, 260, 9.072354320794357587710929507988814669454281514268844884841547607134260303118208e-6)
- };
- const RealType as = a*a;
- const RealType hs = h*h;
- const RealType y = 1 / hs;
- RealType ii = 1;
- unsigned short i = 0;
- RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
- RealType zi = owens_t_znorm1(ah, pol)/h;
- RealType val = 0;
- while( true )
- {
- BOOST_ASSERT(i < 31);
- val += zi*c2[i];
- if( m <= i ) // if( m < i+1 )
- {
- val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
- break;
- } // if( m < i )
- zi = y * (ii*zi - vi);
- vi *= as;
- ii += 2;
- i++;
- } // while( true )
- return val;
- } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah)
- template<class RealType, class Policy>
- inline RealType owens_t_T3(const RealType h, const RealType a, const RealType ah, const Policy& pol)
- {
- typedef typename policies::precision<RealType, Policy>::type precision_type;
- typedef std::integral_constant<int,
- precision_type::value <= 0 ? 64 :
- precision_type::value <= 53 ? 53 : 64
- > tag_type;
- return owens_t_T3_imp(h, a, ah, tag_type(), pol);
- }
- // compute the value of Owen's T function with method T4 from the reference paper
- template<typename RealType>
- inline RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
- const unsigned short maxii = m+m+1;
- const RealType hs = h*h;
- const RealType as = -a*a;
- unsigned short ii = 1;
- RealType ai = a * exp( -hs*(static_cast<RealType>(1)-as)*half<RealType>() ) * one_div_two_pi<RealType>();
- RealType yi = 1;
- RealType val = 0;
- while( true )
- {
- val += ai*yi;
- if( maxii <= ii )
- break;
- ii += 2;
- yi = (static_cast<RealType>(1)-hs*yi) / static_cast<RealType>(ii);
- ai *= as;
- } // while( true )
- return val;
- } // RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m)
- // compute the value of Owen's T function with method T5 from the reference paper
- template<typename RealType>
- inline RealType owens_t_T5_imp(const RealType h, const RealType a, const std::integral_constant<int, 53>&)
- {
- BOOST_MATH_STD_USING
- /*
- NOTICE:
- - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre
- polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre
- quadrature, because T5(h,a,m) contains only x^2 terms.
- - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor
- of 1/(2*pi) according to T5(h,a,m).
- */
- const unsigned short m = 13;
- static const RealType pts[] = {
- static_cast<RealType>(0.35082039676451715489E-02),
- static_cast<RealType>(0.31279042338030753740E-01), static_cast<RealType>(0.85266826283219451090E-01),
- static_cast<RealType>(0.16245071730812277011), static_cast<RealType>(0.25851196049125434828),
- static_cast<RealType>(0.36807553840697533536), static_cast<RealType>(0.48501092905604697475),
- static_cast<RealType>(0.60277514152618576821), static_cast<RealType>(0.71477884217753226516),
- static_cast<RealType>(0.81475510988760098605), static_cast<RealType>(0.89711029755948965867),
- static_cast<RealType>(0.95723808085944261843), static_cast<RealType>(0.99178832974629703586) };
- static const RealType wts[] = {
- static_cast<RealType>(0.18831438115323502887E-01),
- static_cast<RealType>(0.18567086243977649478E-01), static_cast<RealType>(0.18042093461223385584E-01),
- static_cast<RealType>(0.17263829606398753364E-01), static_cast<RealType>(0.16243219975989856730E-01),
- static_cast<RealType>(0.14994592034116704829E-01), static_cast<RealType>(0.13535474469662088392E-01),
- static_cast<RealType>(0.11886351605820165233E-01), static_cast<RealType>(0.10070377242777431897E-01),
- static_cast<RealType>(0.81130545742299586629E-02), static_cast<RealType>(0.60419009528470238773E-02),
- static_cast<RealType>(0.38862217010742057883E-02), static_cast<RealType>(0.16793031084546090448E-02) };
- const RealType as = a*a;
- const RealType hs = -h*h*boost::math::constants::half<RealType>();
- RealType val = 0;
- for(unsigned short i = 0; i < m; ++i)
- {
- BOOST_ASSERT(i < 13);
- const RealType r = static_cast<RealType>(1) + as*pts[i];
- val += wts[i] * exp( hs*r ) / r;
- } // for(unsigned short i = 0; i < m; ++i)
- return val*a;
- } // RealType owens_t_T5(const RealType h, const RealType a)
- // compute the value of Owen's T function with method T5 from the reference paper
- template<typename RealType>
- inline RealType owens_t_T5_imp(const RealType h, const RealType a, const std::integral_constant<int, 64>&)
- {
- BOOST_MATH_STD_USING
- /*
- NOTICE:
- - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre
- polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre
- quadrature, because T5(h,a,m) contains only x^2 terms.
- - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor
- of 1/(2*pi) according to T5(h,a,m).
- */
- const unsigned short m = 19;
- static const RealType pts[] = {
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0016634282895983227941),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.014904509242697054183),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.04103478879005817919),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.079359853513391511008),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.1288612130237615133),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.18822336642448518856),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.25586876186122962384),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.32999972011807857222),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.40864620815774761438),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.48971819306044782365),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.57106118513245543894),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.6505134942981533829),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.72596367859928091618),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.79540665919549865924),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.85699701386308739244),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.90909804422384697594),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.95032536436570154409),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.97958418733152273717),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.99610366384229088321)
- };
- static const RealType wts[] = {
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012975111395684900835),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012888764187499150078),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012716644398857307844),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012459897461364705691),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012120231988292330388),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011699908404856841158),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011201723906897224448),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.010628993848522759853),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0099855296835573320047),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0092756136096132857933),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0085039700881139589055),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0076757344408814561254),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0067964187616556459109),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.005871875456524750363),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0049082589542498110071),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0039119870792519721409),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0028897090921170700834),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0018483371329504443947),
- BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.00079623320100438873578)
- };
- const RealType as = a*a;
- const RealType hs = -h*h*boost::math::constants::half<RealType>();
- RealType val = 0;
- for(unsigned short i = 0; i < m; ++i)
- {
- BOOST_ASSERT(i < 19);
- const RealType r = 1 + as*pts[i];
- val += wts[i] * exp( hs*r ) / r;
- } // for(unsigned short i = 0; i < m; ++i)
- return val*a;
- } // RealType owens_t_T5(const RealType h, const RealType a)
- template<class RealType, class Policy>
- inline RealType owens_t_T5(const RealType h, const RealType a, const Policy&)
- {
- typedef typename policies::precision<RealType, Policy>::type precision_type;
- typedef std::integral_constant<int,
- precision_type::value <= 0 ? 64 :
- precision_type::value <= 53 ? 53 : 64
- > tag_type;
- return owens_t_T5_imp(h, a, tag_type());
- }
- // compute the value of Owen's T function with method T6 from the reference paper
- template<typename RealType, class Policy>
- inline RealType owens_t_T6(const RealType h, const RealType a, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
- const RealType normh = owens_t_znorm2(h, pol);
- const RealType y = static_cast<RealType>(1) - a;
- const RealType r = atan2(y, static_cast<RealType>(1 + a) );
- RealType val = normh * ( static_cast<RealType>(1) - normh ) * half<RealType>();
- if( r != 0 )
- val -= r * exp( -y*h*h*half<RealType>()/r ) * one_div_two_pi<RealType>();
- return val;
- } // RealType owens_t_T6(const RealType h, const RealType a, const unsigned short m)
- template <class T, class Policy>
- std::pair<T, T> owens_t_T1_accelerated(T h, T a, const Policy& pol)
- {
- //
- // This is the same series as T1, but:
- // * The Taylor series for atan has been combined with that for T1,
- // reducing but not eliminating cancellation error.
- // * The resulting alternating series is then accelerated using method 1
- // from H. Cohen, F. Rodriguez Villegas, D. Zagier,
- // "Convergence acceleration of alternating series", Bonn, (1991).
- //
- BOOST_MATH_STD_USING
- static const char* function = "boost::math::owens_t<%1%>(%1%, %1%)";
- T half_h_h = h * h / 2;
- T a_pow = a;
- T aa = a * a;
- T exp_term = exp(-h * h / 2);
- T one_minus_dj_sum = exp_term;
- T sum = a_pow * exp_term;
- T dj_pow = exp_term;
- T term = sum;
- T abs_err;
- int j = 1;
- //
- // Normally with this form of series acceleration we can calculate
- // up front how many terms will be required - based on the assumption
- // that each term decreases in size by a factor of 3. However,
- // that assumption does not apply here, as the underlying T1 series can
- // go quite strongly divergent in the early terms, before strongly
- // converging later. Various "guesstimates" have been tried to take account
- // of this, but they don't always work.... so instead set "n" to the
- // largest value that won't cause overflow later, and abort iteration
- // when the last accelerated term was small enough...
- //
- int n;
- #ifndef BOOST_NO_EXCEPTIONS
- try
- {
- #endif
- n = itrunc(T(tools::log_max_value<T>() / 6));
- #ifndef BOOST_NO_EXCEPTIONS
- }
- catch(...)
- {
- n = (std::numeric_limits<int>::max)();
- }
- #endif
- n = (std::min)(n, 1500);
- T d = pow(3 + sqrt(T(8)), n);
- d = (d + 1 / d) / 2;
- T b = -1;
- T c = -d;
- c = b - c;
- sum *= c;
- b = -n * n * b * 2;
- abs_err = ldexp(fabs(sum), -tools::digits<T>());
- while(j < n)
- {
- a_pow *= aa;
- dj_pow *= half_h_h / j;
- one_minus_dj_sum += dj_pow;
- term = one_minus_dj_sum * a_pow / (2 * j + 1);
- c = b - c;
- sum += c * term;
- abs_err += ldexp((std::max)(T(fabs(sum)), T(fabs(c*term))), -tools::digits<T>());
- b = (j + n) * (j - n) * b / ((j + T(0.5)) * (j + 1));
- ++j;
- //
- // Include an escape route to prevent calculating too many terms:
- //
- if((j > 10) && (fabs(sum * tools::epsilon<T>()) > fabs(c * term)))
- break;
- }
- abs_err += fabs(c * term);
- if(sum < 0) // sum must always be positive, if it's negative something really bad has happened:
- policies::raise_evaluation_error(function, 0, T(0), pol);
- return std::pair<T, T>((sum / d) / boost::math::constants::two_pi<T>(), abs_err / sum);
- }
- template<typename RealType, class Policy>
- inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy& pol, const std::true_type&)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
- const unsigned short maxii = m+m+1;
- const RealType hs = h*h;
- const RealType as = -a*a;
- const RealType y = static_cast<RealType>(1) / hs;
- unsigned short ii = 1;
- RealType val = 0;
- RealType vi = a * exp( -ah*ah*half<RealType>() ) / root_two_pi<RealType>();
- RealType z = owens_t_znorm1(ah, pol)/h;
- RealType last_z = fabs(z);
- RealType lim = policies::get_epsilon<RealType, Policy>();
- while( true )
- {
- val += z;
- //
- // This series stops converging after a while, so put a limit
- // on how far we go before returning our best guess:
- //
- if((fabs(lim * val) > fabs(z)) || ((ii > maxii) && (fabs(z) > last_z)) || (z == 0))
- {
- val *= exp( -hs*half<RealType>() ) / root_two_pi<RealType>();
- break;
- } // if( maxii <= ii )
- last_z = fabs(z);
- z = y * ( vi - static_cast<RealType>(ii) * z );
- vi *= as;
- ii += 2;
- } // while( true )
- return val;
- } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah)
- template<typename RealType, class Policy>
- inline std::pair<RealType, RealType> owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy& pol)
- {
- //
- // This is the same series as T2, but with acceleration applied.
- // Note that we have to be *very* careful to check that nothing bad
- // has happened during evaluation - this series will go divergent
- // and/or fail to alternate at a drop of a hat! :-(
- //
- BOOST_MATH_STD_USING
- using namespace boost::math::constants;
- const RealType hs = h*h;
- const RealType as = -a*a;
- const RealType y = static_cast<RealType>(1) / hs;
- unsigned short ii = 1;
- RealType val = 0;
- RealType vi = a * exp( -ah*ah*half<RealType>() ) / root_two_pi<RealType>();
- RealType z = boost::math::detail::owens_t_znorm1(ah, pol)/h;
- RealType last_z = fabs(z);
- //
- // Normally with this form of series acceleration we can calculate
- // up front how many terms will be required - based on the assumption
- // that each term decreases in size by a factor of 3. However,
- // that assumption does not apply here, as the underlying T1 series can
- // go quite strongly divergent in the early terms, before strongly
- // converging later. Various "guesstimates" have been tried to take account
- // of this, but they don't always work.... so instead set "n" to the
- // largest value that won't cause overflow later, and abort iteration
- // when the last accelerated term was small enough...
- //
- int n;
- #ifndef BOOST_NO_EXCEPTIONS
- try
- {
- #endif
- n = itrunc(RealType(tools::log_max_value<RealType>() / 6));
- #ifndef BOOST_NO_EXCEPTIONS
- }
- catch(...)
- {
- n = (std::numeric_limits<int>::max)();
- }
- #endif
- n = (std::min)(n, 1500);
- RealType d = pow(3 + sqrt(RealType(8)), n);
- d = (d + 1 / d) / 2;
- RealType b = -1;
- RealType c = -d;
- int s = 1;
- for(int k = 0; k < n; ++k)
- {
- //
- // Check for both convergence and whether the series has gone bad:
- //
- if(
- (fabs(z) > last_z) // Series has gone divergent, abort
- || (fabs(val) * tools::epsilon<RealType>() > fabs(c * s * z)) // Convergence!
- || (z * s < 0) // Series has stopped alternating - all bets are off - abort.
- )
- {
- break;
- }
- c = b - c;
- val += c * s * z;
- b = (k + n) * (k - n) * b / ((k + RealType(0.5)) * (k + 1));
- last_z = fabs(z);
- s = -s;
- z = y * ( vi - static_cast<RealType>(ii) * z );
- vi *= as;
- ii += 2;
- } // while( true )
- RealType err = fabs(c * z) / val;
- return std::pair<RealType, RealType>(val * exp( -hs*half<RealType>() ) / (d * root_two_pi<RealType>()), err);
- } // RealType owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy&)
- template<typename RealType, typename Policy>
- inline RealType T4_mp(const RealType h, const RealType a, const Policy& pol)
- {
- BOOST_MATH_STD_USING
-
- const RealType hs = h*h;
- const RealType as = -a*a;
- unsigned short ii = 1;
- RealType ai = constants::one_div_two_pi<RealType>() * a * exp( -0.5*hs*(1.0-as) );
- RealType yi = 1.0;
- RealType val = 0.0;
- RealType lim = boost::math::policies::get_epsilon<RealType, Policy>();
- while( true )
- {
- RealType term = ai*yi;
- val += term;
- if((yi != 0) && (fabs(val * lim) > fabs(term)))
- break;
- ii += 2;
- yi = (1.0-hs*yi) / static_cast<RealType>(ii);
- ai *= as;
- if(ii > (std::min)(1500, (int)policies::get_max_series_iterations<Policy>()))
- policies::raise_evaluation_error("boost::math::owens_t<%1%>", 0, val, pol);
- } // while( true )
- return val;
- } // arg_type owens_t_T4(const arg_type h, const arg_type a, const unsigned short m)
- // This routine dispatches the call to one of six subroutines, depending on the values
- // of h and a.
- // preconditions: h >= 0, 0<=a<=1, ah=a*h
- //
- // Note there are different versions for different precisions....
- template<typename RealType, typename Policy>
- inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, std::integral_constant<int, 64> const&)
- {
- // Simple main case for 64-bit precision or less, this is as per the Patefield-Tandy paper:
- BOOST_MATH_STD_USING
- //
- // Handle some special cases first, these are from
- // page 1077 of Owen's original paper:
- //
- if(h == 0)
- {
- return atan(a) * constants::one_div_two_pi<RealType>();
- }
- if(a == 0)
- {
- return 0;
- }
- if(a == 1)
- {
- return owens_t_znorm2(RealType(-h), pol) * owens_t_znorm2(h, pol) / 2;
- }
- if(a >= tools::max_value<RealType>())
- {
- return owens_t_znorm2(RealType(fabs(h)), pol);
- }
- RealType val = 0; // avoid compiler warnings, 0 will be overwritten in any case
- const unsigned short icode = owens_t_compute_code(h, a);
- const unsigned short m = owens_t_get_order(icode, val /* just a dummy for the type */, pol);
- static const unsigned short meth[] = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6}; // 18 entries
- // determine the appropriate method, T1 ... T6
- switch( meth[icode] )
- {
- case 1: // T1
- val = owens_t_T1(h,a,m,pol);
- break;
- case 2: // T2
- typedef typename policies::precision<RealType, Policy>::type precision_type;
- typedef std::integral_constant<bool, (precision_type::value == 0) || (precision_type::value > 64)> tag_type;
- val = owens_t_T2(h, a, m, ah, pol, tag_type());
- break;
- case 3: // T3
- val = owens_t_T3(h,a,ah, pol);
- break;
- case 4: // T4
- val = owens_t_T4(h,a,m);
- break;
- case 5: // T5
- val = owens_t_T5(h,a, pol);
- break;
- case 6: // T6
- val = owens_t_T6(h,a, pol);
- break;
- default:
- BOOST_THROW_EXCEPTION(std::logic_error("selection routine in Owen's T function failed"));
- }
- return val;
- }
- template<typename RealType, typename Policy>
- inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const std::integral_constant<int, 65>&)
- {
- // Arbitrary precision version:
- BOOST_MATH_STD_USING
- //
- // Handle some special cases first, these are from
- // page 1077 of Owen's original paper:
- //
- if(h == 0)
- {
- return atan(a) * constants::one_div_two_pi<RealType>();
- }
- if(a == 0)
- {
- return 0;
- }
- if(a == 1)
- {
- return owens_t_znorm2(RealType(-h), pol) * owens_t_znorm2(h, pol) / 2;
- }
- if(a >= tools::max_value<RealType>())
- {
- return owens_t_znorm2(RealType(fabs(h)), pol);
- }
- // Attempt arbitrary precision code, this will throw if it goes wrong:
- typedef typename boost::math::policies::normalise<Policy, boost::math::policies::evaluation_error<> >::type forwarding_policy;
- std::pair<RealType, RealType> p1(0, tools::max_value<RealType>()), p2(0, tools::max_value<RealType>());
- RealType target_precision = policies::get_epsilon<RealType, Policy>() * 1000;
- bool have_t1(false), have_t2(false);
- if(ah < 3)
- {
- #ifndef BOOST_NO_EXCEPTIONS
- try
- {
- #endif
- have_t1 = true;
- p1 = owens_t_T1_accelerated(h, a, forwarding_policy());
- if(p1.second < target_precision)
- return p1.first;
- #ifndef BOOST_NO_EXCEPTIONS
- }
- catch(const boost::math::evaluation_error&){} // T1 may fail and throw, that's OK
- #endif
- }
- if(ah > 1)
- {
- #ifndef BOOST_NO_EXCEPTIONS
- try
- {
- #endif
- have_t2 = true;
- p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy());
- if(p2.second < target_precision)
- return p2.first;
- #ifndef BOOST_NO_EXCEPTIONS
- }
- catch(const boost::math::evaluation_error&){} // T2 may fail and throw, that's OK
- #endif
- }
- //
- // If we haven't tried T1 yet, do it now - sometimes it succeeds and the number of iterations
- // is fairly low compared to T4.
- //
- if(!have_t1)
- {
- #ifndef BOOST_NO_EXCEPTIONS
- try
- {
- #endif
- have_t1 = true;
- p1 = owens_t_T1_accelerated(h, a, forwarding_policy());
- if(p1.second < target_precision)
- return p1.first;
- #ifndef BOOST_NO_EXCEPTIONS
- }
- catch(const boost::math::evaluation_error&){} // T1 may fail and throw, that's OK
- #endif
- }
- //
- // If we haven't tried T2 yet, do it now - sometimes it succeeds and the number of iterations
- // is fairly low compared to T4.
- //
- if(!have_t2)
- {
- #ifndef BOOST_NO_EXCEPTIONS
- try
- {
- #endif
- have_t2 = true;
- p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy());
- if(p2.second < target_precision)
- return p2.first;
- #ifndef BOOST_NO_EXCEPTIONS
- }
- catch(const boost::math::evaluation_error&){} // T2 may fail and throw, that's OK
- #endif
- }
- //
- // OK, nothing left to do but try the most expensive option which is T4,
- // this is often slow to converge, but when it does converge it tends to
- // be accurate:
- #ifndef BOOST_NO_EXCEPTIONS
- try
- {
- #endif
- return T4_mp(h, a, pol);
- #ifndef BOOST_NO_EXCEPTIONS
- }
- catch(const boost::math::evaluation_error&){} // T4 may fail and throw, that's OK
- #endif
- //
- // Now look back at the results from T1 and T2 and see if either gave better
- // results than we could get from the 64-bit precision versions.
- //
- if((std::min)(p1.second, p2.second) < 1e-20)
- {
- return p1.second < p2.second ? p1.first : p2.first;
- }
- //
- // We give up - no arbitrary precision versions succeeded!
- //
- return owens_t_dispatch(h, a, ah, pol, std::integral_constant<int, 64>());
- } // RealType owens_t_dispatch(RealType h, RealType a, RealType ah)
- template<typename RealType, typename Policy>
- inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const std::integral_constant<int, 0>&)
- {
- // We don't know what the precision is until runtime:
- if(tools::digits<RealType>() <= 64)
- return owens_t_dispatch(h, a, ah, pol, std::integral_constant<int, 64>());
- return owens_t_dispatch(h, a, ah, pol, std::integral_constant<int, 65>());
- }
- template<typename RealType, typename Policy>
- inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol)
- {
- // Figure out the precision and forward to the correct version:
- typedef typename policies::precision<RealType, Policy>::type precision_type;
- typedef std::integral_constant<int,
- precision_type::value <= 0 ? 0 :
- precision_type::value <= 64 ? 64 : 65
- > tag_type;
- return owens_t_dispatch(h, a, ah, pol, tag_type());
- }
- // compute Owen's T function, T(h,a), for arbitrary values of h and a
- template<typename RealType, class Policy>
- inline RealType owens_t(RealType h, RealType a, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- // exploit that T(-h,a) == T(h,a)
- h = fabs(h);
- // Use equation (2) in the paper to remap the arguments
- // such that h>=0 and 0<=a<=1 for the call of the actual
- // computation routine.
- const RealType fabs_a = fabs(a);
- const RealType fabs_ah = fabs_a*h;
- RealType val = 0.0; // avoid compiler warnings, 0.0 will be overwritten in any case
- if(fabs_a <= 1)
- {
- val = owens_t_dispatch(h, fabs_a, fabs_ah, pol);
- } // if(fabs_a <= 1.0)
- else
- {
- if( h <= 0.67 )
- {
- const RealType normh = owens_t_znorm1(h, pol);
- const RealType normah = owens_t_znorm1(fabs_ah, pol);
- val = static_cast<RealType>(1)/static_cast<RealType>(4) - normh*normah -
- owens_t_dispatch(fabs_ah, static_cast<RealType>(1 / fabs_a), h, pol);
- } // if( h <= 0.67 )
- else
- {
- const RealType normh = detail::owens_t_znorm2(h, pol);
- const RealType normah = detail::owens_t_znorm2(fabs_ah, pol);
- val = constants::half<RealType>()*(normh+normah) - normh*normah -
- owens_t_dispatch(fabs_ah, static_cast<RealType>(1 / fabs_a), h, pol);
- } // else [if( h <= 0.67 )]
- } // else [if(fabs_a <= 1)]
- // exploit that T(h,-a) == -T(h,a)
- if(a < 0)
- {
- return -val;
- } // if(a < 0)
- return val;
- } // RealType owens_t(RealType h, RealType a)
- template <class T, class Policy, class tag>
- struct owens_t_initializer
- {
- struct init
- {
- init()
- {
- do_init(tag());
- }
- template <int N>
- static void do_init(const std::integral_constant<int, N>&){}
- static void do_init(const std::integral_constant<int, 64>&)
- {
- boost::math::owens_t(static_cast<T>(7), static_cast<T>(0.96875), Policy());
- boost::math::owens_t(static_cast<T>(2), static_cast<T>(0.5), Policy());
- }
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
- };
- template <class T, class Policy, class tag>
- const typename owens_t_initializer<T, Policy, tag>::init owens_t_initializer<T, Policy, tag>::initializer;
- } // namespace detail
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a, const Policy& pol)
- {
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::precision<value_type, Policy>::type precision_type;
- typedef std::integral_constant<int,
- precision_type::value <= 0 ? 0 :
- precision_type::value <= 64 ? 64 : 65
- > tag_type;
- detail::owens_t_initializer<result_type, Policy, tag_type>::force_instantiate();
-
- return policies::checked_narrowing_cast<result_type, Policy>(detail::owens_t(static_cast<value_type>(h), static_cast<value_type>(a), pol), "boost::math::owens_t<%1%>(%1%,%1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a)
- {
- return owens_t(h, a, policies::policy<>());
- }
- } // namespace math
- } // namespace boost
- #ifdef BOOST_MSVC
- #pragma warning(pop)
- #endif
- #endif
- // EOF
|