123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- // (C) Copyright John Maddock 2006.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_LEGENDRE_HPP
- #define BOOST_MATH_SPECIAL_LEGENDRE_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <utility>
- #include <vector>
- #include <type_traits>
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/factorials.hpp>
- #include <boost/math/tools/roots.hpp>
- #include <boost/math/tools/config.hpp>
- #include <boost/math/tools/cxx03_warn.hpp>
- namespace boost{
- namespace math{
- // Recurrence relation for legendre P and Q polynomials:
- template <class T1, class T2, class T3>
- inline typename tools::promote_args<T1, T2, T3>::type
- legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1)
- {
- typedef typename tools::promote_args<T1, T2, T3>::type result_type;
- return ((2 * l + 1) * result_type(x) * result_type(Pl) - l * result_type(Plm1)) / (l + 1);
- }
- namespace detail{
- // Implement Legendre P and Q polynomials via recurrence:
- template <class T, class Policy>
- T legendre_imp(unsigned l, T x, const Policy& pol, bool second = false)
- {
- static const char* function = "boost::math::legrendre_p<%1%>(unsigned, %1%)";
- // Error handling:
- if((x < -1) || (x > 1))
- return policies::raise_domain_error<T>(
- function,
- "The Legendre Polynomial is defined for"
- " -1 <= x <= 1, but got x = %1%.", x, pol);
- T p0, p1;
- if(second)
- {
- // A solution of the second kind (Q):
- p0 = (boost::math::log1p(x, pol) - boost::math::log1p(-x, pol)) / 2;
- p1 = x * p0 - 1;
- }
- else
- {
- // A solution of the first kind (P):
- p0 = 1;
- p1 = x;
- }
- if(l == 0)
- return p0;
- unsigned n = 1;
- while(n < l)
- {
- std::swap(p0, p1);
- p1 = boost::math::legendre_next(n, x, p0, p1);
- ++n;
- }
- return p1;
- }
- template <class T, class Policy>
- T legendre_p_prime_imp(unsigned l, T x, const Policy& pol, T* Pn
- #ifdef BOOST_NO_CXX11_NULLPTR
- = 0
- #else
- = nullptr
- #endif
- )
- {
- static const char* function = "boost::math::legrendre_p_prime<%1%>(unsigned, %1%)";
- // Error handling:
- if ((x < -1) || (x > 1))
- return policies::raise_domain_error<T>(
- function,
- "The Legendre Polynomial is defined for"
- " -1 <= x <= 1, but got x = %1%.", x, pol);
-
- if (l == 0)
- {
- if (Pn)
- {
- *Pn = 1;
- }
- return 0;
- }
- T p0 = 1;
- T p1 = x;
- T p_prime;
- bool odd = l & 1;
- // If the order is odd, we sum all the even polynomials:
- if (odd)
- {
- p_prime = p0;
- }
- else // Otherwise we sum the odd polynomials * (2n+1)
- {
- p_prime = 3*p1;
- }
- unsigned n = 1;
- while(n < l - 1)
- {
- std::swap(p0, p1);
- p1 = boost::math::legendre_next(n, x, p0, p1);
- ++n;
- if (odd)
- {
- p_prime += (2*n+1)*p1;
- odd = false;
- }
- else
- {
- odd = true;
- }
- }
- // This allows us to evaluate the derivative and the function for the same cost.
- if (Pn)
- {
- std::swap(p0, p1);
- *Pn = boost::math::legendre_next(n, x, p0, p1);
- }
- return p_prime;
- }
- template <class T, class Policy>
- struct legendre_p_zero_func
- {
- int n;
- const Policy& pol;
- legendre_p_zero_func(int n_, const Policy& p) : n(n_), pol(p) {}
- std::pair<T, T> operator()(T x) const
- {
- T Pn;
- T Pn_prime = detail::legendre_p_prime_imp(n, x, pol, &Pn);
- return std::pair<T, T>(Pn, Pn_prime);
- }
- };
- template <class T, class Policy>
- std::vector<T> legendre_p_zeros_imp(int n, const Policy& pol)
- {
- using std::cos;
- using std::sin;
- using std::ceil;
- using std::sqrt;
- using boost::math::constants::pi;
- using boost::math::constants::half;
- using boost::math::tools::newton_raphson_iterate;
- BOOST_ASSERT(n >= 0);
- std::vector<T> zeros;
- if (n == 0)
- {
- // There are no zeros of P_0(x) = 1.
- return zeros;
- }
- int k;
- if (n & 1)
- {
- zeros.resize((n-1)/2 + 1, std::numeric_limits<T>::quiet_NaN());
- zeros[0] = 0;
- k = 1;
- }
- else
- {
- zeros.resize(n/2, std::numeric_limits<T>::quiet_NaN());
- k = 0;
- }
- T half_n = ceil(n*half<T>());
- while (k < (int)zeros.size())
- {
- // Bracket the root: Szego:
- // Gabriel Szego, Inequalities for the Zeros of Legendre Polynomials and Related Functions, Transactions of the American Mathematical Society, Vol. 39, No. 1 (1936)
- T theta_nk = ((half_n - half<T>()*half<T>() - static_cast<T>(k))*pi<T>())/(static_cast<T>(n)+half<T>());
- T lower_bound = cos( (half_n - static_cast<T>(k))*pi<T>()/static_cast<T>(n + 1));
- T cos_nk = cos(theta_nk);
- T upper_bound = cos_nk;
- // First guess follows from:
- // F. G. Tricomi, Sugli zeri dei polinomi sferici ed ultrasferici, Ann. Mat. Pura Appl., 31 (1950), pp. 93-97;
- T inv_n_sq = 1/static_cast<T>(n*n);
- T sin_nk = sin(theta_nk);
- T x_nk_guess = (1 - inv_n_sq/static_cast<T>(8) + inv_n_sq /static_cast<T>(8*n) - (inv_n_sq*inv_n_sq/384)*(39 - 28 / (sin_nk*sin_nk) ) )*cos_nk;
- boost::uintmax_t number_of_iterations = policies::get_max_root_iterations<Policy>();
- legendre_p_zero_func<T, Policy> f(n, pol);
- const T x_nk = newton_raphson_iterate(f, x_nk_guess,
- lower_bound, upper_bound,
- policies::digits<T, Policy>(),
- number_of_iterations);
- BOOST_ASSERT(lower_bound < x_nk);
- BOOST_ASSERT(upper_bound > x_nk);
- zeros[k] = x_nk;
- ++k;
- }
- return zeros;
- }
- } // namespace detail
- template <class T, class Policy>
- inline typename std::enable_if<policies::is_policy<Policy>::value, typename tools::promote_args<T>::type>::type
- legendre_p(int l, T x, const Policy& pol)
- {
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- static const char* function = "boost::math::legendre_p<%1%>(unsigned, %1%)";
- if(l < 0)
- return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(-l-1, static_cast<value_type>(x), pol, false), function);
- return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, false), function);
- }
- template <class T, class Policy>
- inline typename std::enable_if<policies::is_policy<Policy>::value, typename tools::promote_args<T>::type>::type
- legendre_p_prime(int l, T x, const Policy& pol)
- {
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- static const char* function = "boost::math::legendre_p_prime<%1%>(unsigned, %1%)";
- if(l < 0)
- return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_prime_imp(-l-1, static_cast<value_type>(x), pol), function);
- return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_prime_imp(l, static_cast<value_type>(x), pol), function);
- }
- template <class T>
- inline typename tools::promote_args<T>::type
- legendre_p(int l, T x)
- {
- return boost::math::legendre_p(l, x, policies::policy<>());
- }
- template <class T>
- inline typename tools::promote_args<T>::type
- legendre_p_prime(int l, T x)
- {
- return boost::math::legendre_p_prime(l, x, policies::policy<>());
- }
- template <class T, class Policy>
- inline std::vector<T> legendre_p_zeros(int l, const Policy& pol)
- {
- if(l < 0)
- return detail::legendre_p_zeros_imp<T>(-l-1, pol);
- return detail::legendre_p_zeros_imp<T>(l, pol);
- }
- template <class T>
- inline std::vector<T> legendre_p_zeros(int l)
- {
- return boost::math::legendre_p_zeros<T>(l, policies::policy<>());
- }
- template <class T, class Policy>
- inline typename std::enable_if<policies::is_policy<Policy>::value, typename tools::promote_args<T>::type>::type
- legendre_q(unsigned l, T x, const Policy& pol)
- {
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, true), "boost::math::legendre_q<%1%>(unsigned, %1%)");
- }
- template <class T>
- inline typename tools::promote_args<T>::type
- legendre_q(unsigned l, T x)
- {
- return boost::math::legendre_q(l, x, policies::policy<>());
- }
- // Recurrence for associated polynomials:
- template <class T1, class T2, class T3>
- inline typename tools::promote_args<T1, T2, T3>::type
- legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1)
- {
- typedef typename tools::promote_args<T1, T2, T3>::type result_type;
- return ((2 * l + 1) * result_type(x) * result_type(Pl) - (l + m) * result_type(Plm1)) / (l + 1 - m);
- }
- namespace detail{
- // Legendre P associated polynomial:
- template <class T, class Policy>
- T legendre_p_imp(int l, int m, T x, T sin_theta_power, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- // Error handling:
- if((x < -1) || (x > 1))
- return policies::raise_domain_error<T>(
- "boost::math::legendre_p<%1%>(int, int, %1%)",
- "The associated Legendre Polynomial is defined for"
- " -1 <= x <= 1, but got x = %1%.", x, pol);
- // Handle negative arguments first:
- if(l < 0)
- return legendre_p_imp(-l-1, m, x, sin_theta_power, pol);
- if ((l == 0) && (m == -1))
- {
- return sqrt((1 - x) / (1 + x));
- }
- if ((l == 1) && (m == 0))
- {
- return x;
- }
- if (-m == l)
- {
- return pow((1 - x * x) / 4, T(l) / 2) / boost::math::tgamma(l + 1, pol);
- }
- if(m < 0)
- {
- int sign = (m&1) ? -1 : 1;
- return sign * boost::math::tgamma_ratio(static_cast<T>(l+m+1), static_cast<T>(l+1-m), pol) * legendre_p_imp(l, -m, x, sin_theta_power, pol);
- }
- // Special cases:
- if(m > l)
- return 0;
- if(m == 0)
- return boost::math::legendre_p(l, x, pol);
- T p0 = boost::math::double_factorial<T>(2 * m - 1, pol) * sin_theta_power;
- if(m&1)
- p0 *= -1;
- if(m == l)
- return p0;
- T p1 = x * (2 * m + 1) * p0;
- int n = m + 1;
- while(n < l)
- {
- std::swap(p0, p1);
- p1 = boost::math::legendre_next(n, m, x, p0, p1);
- ++n;
- }
- return p1;
- }
- template <class T, class Policy>
- inline T legendre_p_imp(int l, int m, T x, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- // TODO: we really could use that mythical "pow1p" function here:
- return legendre_p_imp(l, m, x, static_cast<T>(pow(1 - x*x, T(abs(m))/2)), pol);
- }
- }
- template <class T, class Policy>
- inline typename tools::promote_args<T>::type
- legendre_p(int l, int m, T x, const Policy& pol)
- {
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_imp(l, m, static_cast<value_type>(x), pol), "boost::math::legendre_p<%1%>(int, int, %1%)");
- }
- template <class T>
- inline typename tools::promote_args<T>::type
- legendre_p(int l, int m, T x)
- {
- return boost::math::legendre_p(l, m, x, policies::policy<>());
- }
- } // namespace math
- } // namespace boost
- #endif // BOOST_MATH_SPECIAL_LEGENDRE_HPP
|