123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175 |
- // Copyright John Maddock 2017.
- // Copyright Paul A. Bristow 2016, 2017, 2018.
- // Copyright Nicholas Thompson 2018
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or
- // copy at http ://www.boost.org/LICENSE_1_0.txt).
- #ifndef BOOST_MATH_SF_LAMBERT_W_HPP
- #define BOOST_MATH_SF_LAMBERT_W_HPP
- #ifdef _MSC_VER
- #pragma warning(disable : 4127)
- #endif
- /*
- Implementation of an algorithm for the Lambert W0 and W-1 real-only functions.
- This code is based in part on the algorithm by
- Toshio Fukushima,
- "Precise and fast computation of Lambert W-functions without transcendental function evaluations",
- J.Comp.Appl.Math. 244 (2013) 77-89,
- and on a C/C++ version by Darko Veberic, darko.veberic@ijs.si
- based on the Fukushima algorithm and Toshio Fukushima's FORTRAN version of his algorithm.
- First derivative of Lambert_w is derived from
- Princeton Companion to Applied Mathematics, 'The Lambert-W function', Section 1.3: Series and Generating Functions.
- */
- /*
- TODO revise this list of macros.
- Some macros that will show some (or much) diagnostic values if #defined.
- //[boost_math_instrument_lambert_w_macros
- // #define-able macros
- BOOST_MATH_INSTRUMENT_LAMBERT_W_HALLEY // Halley refinement diagnostics.
- BOOST_MATH_INSTRUMENT_LAMBERT_W_PRECISION // Precision.
- BOOST_MATH_INSTRUMENT_LAMBERT_WM1 // W1 branch diagnostics.
- BOOST_MATH_INSTRUMENT_LAMBERT_WM1_HALLEY // Halley refinement diagnostics only for W-1 branch.
- BOOST_MATH_INSTRUMENT_LAMBERT_WM1_TINY // K > 64, z > -1.0264389699511303e-26
- BOOST_MATH_INSTRUMENT_LAMBERT_WM1_LOOKUP // Show results from W-1 lookup table.
- BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER // Schroeder refinement diagnostics.
- BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS // Number of terms used for near-singularity series.
- BOOST_MATH_INSTRUMENT_LAMBERT_W_SINGULARITY_SERIES // Show evaluation of series near branch singularity.
- BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES_ITERATIONS // Show evaluation of series for small z.
- //] [/boost_math_instrument_lambert_w_macros]
- */
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/policies/policy.hpp>
- #include <boost/math/tools/promotion.hpp>
- #include <boost/math/special_functions/fpclassify.hpp>
- #include <boost/math/special_functions/log1p.hpp> // for log (1 + x)
- #include <boost/math/constants/constants.hpp> // For exp_minus_one == 3.67879441171442321595523770161460867e-01.
- #include <boost/math/special_functions/pow.hpp> // powers with compile time exponent, used in arbitrary precision code.
- #include <boost/math/tools/series.hpp> // series functor.
- //#include <boost/math/tools/polynomial.hpp> // polynomial.
- #include <boost/math/tools/rational.hpp> // evaluate_polynomial.
- #include <boost/type_traits/is_integral.hpp>
- #include <boost/math/tools/precision.hpp> // boost::math::tools::max_value().
- #include <boost/math/tools/big_constant.hpp>
- #include <boost/math/tools/cxx03_warn.hpp>
- #include <limits>
- #include <cmath>
- #include <limits>
- #include <exception>
- #include <type_traits>
- #include <cstdint>
- // Needed for testing and diagnostics only.
- #include <iostream>
- #include <typeinfo>
- #include <boost/math/special_functions/next.hpp> // For float_distance.
- using lookup_t = double; // Type for lookup table (double or float, or even long double?)
- //#include "J:\Cpp\Misc\lambert_w_lookup_table_generator\lambert_w_lookup_table.ipp"
- // #include "lambert_w_lookup_table.ipp" // Boost.Math version.
- #include <boost/math/special_functions/detail/lambert_w_lookup_table.ipp>
- #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
- //
- // This is the only way we can avoid
- // warning: non-standard suffix on floating constant [-Wpedantic]
- // when building with -Wall -pedantic. Neither __extension__
- // nor #pragma diagnostic ignored work :(
- //
- #pragma GCC system_header
- #endif
- namespace boost {
- namespace math {
- namespace lambert_w_detail {
- //! \brief Applies a single Halley step to make a better estimate of Lambert W.
- //! \details Used the simplified formulae obtained from
- //! http://www.wolframalpha.com/input/?i=%5B2(z+exp(z)-w)+d%2Fdx+(z+exp(z)-w)%5D+%2F+%5B2+(d%2Fdx+(z+exp(z)-w))%5E2+-+(z+exp(z)-w)+d%5E2%2Fdx%5E2+(z+exp(z)-w)%5D
- //! [2(z exp(z)-w) d/dx (z exp(z)-w)] / [2 (d/dx (z exp(z)-w))^2 - (z exp(z)-w) d^2/dx^2 (z exp(z)-w)]
- //! \tparam T floating-point (or fixed-point) type.
- //! \param w_est Lambert W estimate.
- //! \param z Argument z for Lambert_w function.
- //! \returns New estimate of Lambert W, hopefully improved.
- //!
- template <typename T>
- inline T lambert_w_halley_step(T w_est, const T z)
- {
- BOOST_MATH_STD_USING
- T e = exp(w_est);
- w_est -= 2 * (w_est + 1) * (e * w_est - z) / (z * (w_est + 2) + e * (w_est * (w_est + 2) + 2));
- return w_est;
- } // template <typename T> lambert_w_halley_step(T w_est, T z)
- //! \brief Halley iterate to refine Lambert_w estimate,
- //! taking at least one Halley_step.
- //! Repeat Halley steps until the *last step* had fewer than half the digits wrong,
- //! the step we've just taken should have been sufficient to have completed the iteration.
- //! \tparam T floating-point (or fixed-point) type.
- //! \param z Argument z for Lambert_w function.
- //! \param w_est Lambert w estimate.
- template <typename T>
- inline T lambert_w_halley_iterate(T w_est, const T z)
- {
- BOOST_MATH_STD_USING
- static const T max_diff = boost::math::tools::root_epsilon<T>() * fabs(w_est);
- T w_new = lambert_w_halley_step(w_est, z);
- T diff = fabs(w_est - w_new);
- while (diff > max_diff)
- {
- w_est = w_new;
- w_new = lambert_w_halley_step(w_est, z);
- diff = fabs(w_est - w_new);
- }
- return w_new;
- } // template <typename T> lambert_w_halley_iterate(T w_est, T z)
- // Two Halley function versions that either
- // single step (if std::false_type) or iterate (if std::true_type).
- // Selected at compile-time using parameter 3.
- template <typename T>
- inline T lambert_w_maybe_halley_iterate(T z, T w, std::false_type const&)
- {
- return lambert_w_halley_step(z, w); // Single step.
- }
- template <typename T>
- inline T lambert_w_maybe_halley_iterate(T z, T w, std::true_type const&)
- {
- return lambert_w_halley_iterate(z, w); // Iterate steps.
- }
- //! maybe_reduce_to_double function,
- //! Two versions that have a compile-time option to
- //! reduce argument z to double precision (if true_type).
- //! Version is selected at compile-time using parameter 2.
- template <typename T>
- inline double maybe_reduce_to_double(const T& z, const std::true_type&)
- {
- return static_cast<double>(z); // Reduce to double precision.
- }
- template <typename T>
- inline T maybe_reduce_to_double(const T& z, const std::false_type&)
- { // Don't reduce to double.
- return z;
- }
- template <typename T>
- inline double must_reduce_to_double(const T& z, const std::true_type&)
- {
- return static_cast<double>(z); // Reduce to double precision.
- }
- template <typename T>
- inline double must_reduce_to_double(const T& z, const std::false_type&)
- { // try a lexical_cast and hope for the best:
- return boost::lexical_cast<double>(z);
- }
- //! \brief Schroeder method, fifth-order update formula,
- //! \details See T. Fukushima page 80-81, and
- //! A. Householder, The Numerical Treatment of a Single Nonlinear Equation,
- //! McGraw-Hill, New York, 1970, section 4.4.
- //! Fukushima algorithm switches to @c schroeder_update after pre-computed bisections,
- //! chosen to ensure that the result will be achieve the +/- 10 epsilon target.
- //! \param w Lambert w estimate from bisection or series.
- //! \param y bracketing value from bisection.
- //! \returns Refined estimate of Lambert w.
- // Schroeder refinement, called unless NOT required by precision policy.
- template<typename T>
- inline T schroeder_update(const T w, const T y)
- {
- // Compute derivatives using 5th order Schroeder refinement.
- // Since this is the final step, it will always use the highest precision type T.
- // Example of Call:
- // result = schroeder_update(w, y);
- //where
- // w is estimate of Lambert W (from bisection or series).
- // y is z * e^-w.
- BOOST_MATH_STD_USING // Aid argument dependent lookup of abs.
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER
- std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- using boost::math::float_distance;
- T fd = float_distance<T>(w, y);
- std::cout << "Schroder ";
- if (abs(fd) < 214748000.)
- {
- std::cout << " Distance = "<< static_cast<int>(fd);
- }
- else
- {
- std::cout << "Difference w - y = " << (w - y) << ".";
- }
- std::cout << std::endl;
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER
- // Fukushima equation 18, page 6.
- const T f0 = w - y; // f0 = w - y.
- const T f1 = 1 + y; // f1 = df/dW
- const T f00 = f0 * f0;
- const T f11 = f1 * f1;
- const T f0y = f0 * y;
- const T result =
- w - 4 * f0 * (6 * f1 * (f11 + f0y) + f00 * y) /
- (f11 * (24 * f11 + 36 * f0y) +
- f00 * (6 * y * y + 8 * f1 * y + f0y)); // Fukushima Page 81, equation 21 from equation 20.
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER
- std::cout << "Schroeder refined " << w << " " << y << ", difference " << w-y << ", change " << w - result << ", to result " << result << std::endl;
- std::cout.precision(saved_precision); // Restore.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER
- return result;
- } // template<typename T = double> T schroeder_update(const T w, const T y)
- //! \brief Series expansion used near the singularity/branch point z = -exp(-1) = -3.6787944.
- //! Wolfram InverseSeries[Series[sqrt[2(p Exp[1 + p] + 1)], {p,-1, 20}]]
- //! Wolfram command used to obtain 40 series terms at 50 decimal digit precision was
- //! N[InverseSeries[Series[Sqrt[2(p Exp[1 + p] + 1)], { p,-1,40 }]], 50]
- //! -1+p-p^2/3+(11 p^3)/72-(43 p^4)/540+(769 p^5)/17280-(221 p^6)/8505+(680863 p^7)/43545600 ...
- //! Decimal values of specifications for built-in floating-point types below
- //! are at least 21 digits precision == max_digits10 for long double.
- //! Longer decimal digits strings are rationals evaluated using Wolfram.
- template<typename T>
- T lambert_w_singularity_series(const T p)
- {
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SINGULARITY_SERIES
- std::size_t saved_precision = std::cout.precision(3);
- std::cout << "Singularity_series Lambert_w p argument = " << p << std::endl;
- std::cout
- //<< "Argument Type = " << typeid(T).name()
- //<< ", max_digits10 = " << std::numeric_limits<T>::max_digits10
- //<< ", epsilon = " << std::numeric_limits<T>::epsilon()
- << std::endl;
- std::cout.precision(saved_precision);
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SINGULARITY_SERIES
- static const T q[] =
- {
- -static_cast<T>(1), // j0
- +T(1), // j1
- -T(1) / 3, // 1/3 j2
- +T(11) / 72, // 0.152777777777777778, // 11/72 j3
- -T(43) / 540, // 0.0796296296296296296, // 43/540 j4
- +T(769) / 17280, // 0.0445023148148148148, j5
- -T(221) / 8505, // 0.0259847148736037625, j6
- //+T(0.0156356325323339212L), // j7
- //+T(0.015635632532333921222810111699000587889476778365667L), // j7 from Wolfram N[680863/43545600, 50]
- +T(680863uLL) / 43545600uLL, // +0.0156356325323339212, j7
- //-T(0.00961689202429943171L), // j8
- -T(1963uLL) / 204120uLL, // 0.00961689202429943171, j8
- //-T(0.0096168920242994317068391142465216539290613364687439L), // j8 from Wolfram N[1963/204120, 50]
- +T(226287557uLL) / 37623398400uLL, // 0.00601454325295611786, j9
- -T(5776369uLL) / 1515591000uLL, // 0.00381129803489199923, j10
- //+T(0.00244087799114398267L), j11 0.0024408779911439826658968585286437530215699919795550
- +T(169709463197uLL) / 69528040243200uLL, // j11
- // -T(0.00157693034468678425L), // j12 -0.0015769303446867842539234095399314115973161850314723
- -T(1118511313uLL) / 709296588000uLL, // j12
- +T(667874164916771uLL) / 650782456676352000uLL, // j13
- //+T(0.00102626332050760715L), // j13 0.0010262633205076071544375481533906861056468041465973
- -T(500525573uLL) / 744761417400uLL, // j14
- // -T(0.000672061631156136204L), j14
- //+T(1003663334225097487uLL) / 234281684403486720000uLL, // j15 0.00044247306181462090993020760858473726479232802068800 error C2177: constant too big
- //+T(0.000442473061814620910L, // j15
- BOOST_MATH_BIG_CONSTANT(T, 64, +0.000442473061814620910), // j15
- // -T(0.000292677224729627445L), // j16
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.000292677224729627445), // j16
- //+T(0.000194387276054539318L), // j17
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.000194387276054539318), // j17
- //-T(0.000129574266852748819L), // j18
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.000129574266852748819), // j18
- //+T(0.0000866503580520812717L), // j19 N[+1150497127780071399782389/13277465363600276402995200000, 50] 0.000086650358052081271660451590462390293190597827783288
- BOOST_MATH_BIG_CONSTANT(T, 64, +0.0000866503580520812717), // j19
- //-T(0.0000581136075044138168L) // j20 N[2853534237182741069/49102686267859224000000, 50] 0.000058113607504413816772205464778828177256611844221913
- // -T(2853534237182741069uLL) / 49102686267859224000000uLL // j20 // error C2177: constant too big,
- // so must use BOOST_MATH_BIG_CONSTANT(T, ) format in hope of using suffix Q for quad or decimal digits string for others.
- //-T(0.000058113607504413816772205464778828177256611844221913L), // j20 N[2853534237182741069/49102686267859224000000, 50] 0.000058113607504413816772205464778828177256611844221913
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.000058113607504413816772205464778828177256611844221913) // j20 - last used by Fukushima
- // More terms don't seem to give any improvement (worse in fact) and are not use for many z values.
- //BOOST_MATH_BIG_CONSTANT(T, +0.000039076684867439051635395583044527492132109160553593), // j21
- //BOOST_MATH_BIG_CONSTANT(T, -0.000026338064747231098738584082718649443078703982217219), // j22
- //BOOST_MATH_BIG_CONSTANT(T, +0.000017790345805079585400736282075184540383274460464169), // j23
- //BOOST_MATH_BIG_CONSTANT(T, -0.000012040352739559976942274116578992585158113153190354), // j24
- //BOOST_MATH_BIG_CONSTANT(T, +8.1635319824966121713827512573558687050675701559448E-6), // j25
- //BOOST_MATH_BIG_CONSTANT(T, -5.5442032085673591366657251660804575198155559225316E-6) // j26
- // -T(5.5442032085673591366657251660804575198155559225316E-6L) // j26
- // 21 to 26 Added for long double.
- }; // static const T q[]
- /*
- // Temporary copy of original double values for comparison; these are reproduced well.
- static const T q[] =
- {
- -1L, // j0
- +1L, // j1
- -0.333333333333333333L, // 1/3 j2
- +0.152777777777777778L, // 11/72 j3
- -0.0796296296296296296L, // 43/540
- +0.0445023148148148148L,
- -0.0259847148736037625L,
- +0.0156356325323339212L,
- -0.00961689202429943171L,
- +0.00601454325295611786L,
- -0.00381129803489199923L,
- +0.00244087799114398267L,
- -0.00157693034468678425L,
- +0.00102626332050760715L,
- -0.000672061631156136204L,
- +0.000442473061814620910L,
- -0.000292677224729627445L,
- +0.000194387276054539318L,
- -0.000129574266852748819L,
- +0.0000866503580520812717L,
- -0.0000581136075044138168L // j20
- };
- */
- // Decide how many series terms to use, increasing as z approaches the singularity,
- // balancing run-time versus computational noise from round-off.
- // In practice, we truncate the series expansion at a certain order.
- // If the order is too large, not only does the amount of computation increase,
- // but also the round-off errors accumulate.
- // See Fukushima equation 35, page 85 for logic of choice of number of series terms.
- BOOST_MATH_STD_USING // Aid argument dependent lookup (ADL) of abs.
- const T absp = abs(p);
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS
- {
- int terms = 20; // Default to using all terms.
- if (absp < 0.01159)
- { // Very near singularity.
- terms = 6;
- }
- else if (absp < 0.0766)
- { // Near singularity.
- terms = 10;
- }
- std::streamsize saved_precision = std::cout.precision(3);
- std::cout << "abs(p) = " << absp << ", terms = " << terms << std::endl;
- std::cout.precision(saved_precision);
- }
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS
- if (absp < 0.01159)
- { // Only 6 near-singularity series terms are useful.
- return
- -1 +
- p * (1 +
- p * (q[2] +
- p * (q[3] +
- p * (q[4] +
- p * (q[5] +
- p * q[6]
- )))));
- }
- else if (absp < 0.0766) // Use 10 near-singularity series terms.
- { // Use 10 near-singularity series terms.
- return
- -1 +
- p * (1 +
- p * (q[2] +
- p * (q[3] +
- p * (q[4] +
- p * (q[5] +
- p * (q[6] +
- p * (q[7] +
- p * (q[8] +
- p * (q[9] +
- p * q[10]
- )))))))));
- }
- else
- { // Use all 20 near-singularity series terms.
- return
- -1 +
- p * (1 +
- p * (q[2] +
- p * (q[3] +
- p * (q[4] +
- p * (q[5] +
- p * (q[6] +
- p * (q[7] +
- p * (q[8] +
- p * (q[9] +
- p * (q[10] +
- p * (q[11] +
- p * (q[12] +
- p * (q[13] +
- p * (q[14] +
- p * (q[15] +
- p * (q[16] +
- p * (q[17] +
- p * (q[18] +
- p * (q[19] +
- p * q[20] // Last Fukushima term.
- )))))))))))))))))));
- // + // more terms for more precise T: long double ...
- //// but makes almost no difference, so don't use more terms?
- // p*q[21] +
- // p*q[22] +
- // p*q[23] +
- // p*q[24] +
- // p*q[25]
- // )))))))))))))))))));
- }
- } // template<typename T = double> T lambert_w_singularity_series(const T p)
- /////////////////////////////////////////////////////////////////////////////////////////////
- //! \brief Series expansion used near zero (abs(z) < 0.05).
- //! \details
- //! Coefficients of the inverted series expansion of the Lambert W function around z = 0.
- //! Tosio Fukushima always uses all 17 terms of a Taylor series computed using Wolfram with
- //! InverseSeries[Series[z Exp[z],{z,0,17}]]
- //! Tosio Fukushima / Journal of Computational and Applied Mathematics 244 (2013) page 86.
- //! Decimal values of specifications for built-in floating-point types below
- //! are 21 digits precision == max_digits10 for long double.
- //! Care! Some coefficients might overflow some fixed_point types.
- //! This version is intended to allow use by user-defined types
- //! like Boost.Multiprecision quad and cpp_dec_float types.
- //! The three specializations below for built-in float, double
- //! (and perhaps long double) will be chosen in preference for these types.
- //! This version uses rationals computed by Wolfram as far as possible,
- //! limited by maximum size of uLL integers.
- //! For higher term, uses decimal digit strings computed by Wolfram up to the maximum possible using uLL rationals,
- //! and then higher coefficients are computed as necessary using function lambert_w0_small_z_series_term
- //! until the precision required by the policy is achieved.
- //! InverseSeries[Series[z Exp[z],{z,0,34}]] also computed.
- // Series evaluation for LambertW(z) as z -> 0.
- // See http://functions.wolfram.com/ElementaryFunctions/ProductLog/06/01/01/0003/
- // http://functions.wolfram.com/ElementaryFunctions/ProductLog/06/01/01/0003/MainEq1.L.gif
- //! \brief lambert_w0_small_z uses a tag_type to select a variant depending on the size of the type.
- //! The Lambert W is computed by lambert_w0_small_z for small z.
- //! The cutoff for z smallness determined by Tosio Fukushima by trial and error is (abs(z) < 0.05),
- //! but the optimum might be a function of the size of the type of z.
- //! \details
- //! The tag_type selection is based on the value @c std::numeric_limits<T>::max_digits10.
- //! This allows distinguishing between long double types that commonly vary between 64 and 80-bits,
- //! and also compilers that have a float type using 64 bits and/or long double using 128-bits.
- //! It assumes that max_digits10 is defined correctly or this might fail to make the correct selection.
- //! causing very small differences in computing lambert_w that would be very difficult to detect and diagnose.
- //! Cannot switch on @c std::numeric_limits<>::max() because comparison values may overflow the compiler limit.
- //! Cannot switch on @c std::numeric_limits<long double>::max_exponent10()
- //! because both 80 and 128 bit floating-point implementations use 11 bits for the exponent.
- //! So must rely on @c std::numeric_limits<long double>::max_digits10.
- //! Specialization of float zero series expansion used for small z (abs(z) < 0.05).
- //! Specializations of lambert_w0_small_z for built-in types.
- //! These specializations should be chosen in preference to T version.
- //! For example: lambert_w0_small_z(0.001F) should use the float version.
- //! (Parameter Policy is not used by built-in types when all terms are used during an inline computation,
- //! but for the tag_type selection to work, they all must include Policy in their signature.
- // Forward declaration of variants of lambert_w0_small_z.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T x, const Policy&, std::integral_constant<int, 0> const&); // for float (32-bit) type.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T x, const Policy&, std::integral_constant<int, 1> const&); // for double (64-bit) type.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T x, const Policy&, std::integral_constant<int, 2> const&); // for long double (double extended 80-bit) type.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T x, const Policy&, std::integral_constant<int, 3> const&); // for long double (128-bit) type.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T x, const Policy&, std::integral_constant<int, 4> const&); // for float128 quadmath Q type.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T x, const Policy&, std::integral_constant<int, 5> const&); // Generic multiprecision T.
- // Set tag_type depending on max_digits10.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T x, const Policy& pol)
- { //std::numeric_limits<T>::max_digits10 == 36 ? 3 : // 128-bit long double.
- using tag_type = std::integral_constant<int,
- std::numeric_limits<T>::is_specialized == 0 ? 5 :
- #ifndef BOOST_NO_CXX11_NUMERIC_LIMITS
- std::numeric_limits<T>::max_digits10 <= 9 ? 0 : // for float 32-bit.
- std::numeric_limits<T>::max_digits10 <= 17 ? 1 : // for double 64-bit.
- std::numeric_limits<T>::max_digits10 <= 22 ? 2 : // for 80-bit double extended.
- std::numeric_limits<T>::max_digits10 < 37 ? 4 // for both 128-bit long double (3) and 128-bit quad suffix Q type (4).
- #else
- std::numeric_limits<T>::radix != 2 ? 5 :
- std::numeric_limits<T>::digits <= 24 ? 0 : // for float 32-bit.
- std::numeric_limits<T>::digits <= 53 ? 1 : // for double 64-bit.
- std::numeric_limits<T>::digits <= 64 ? 2 : // for 80-bit double extended.
- std::numeric_limits<T>::digits <= 113 ? 4 // for both 128-bit long double (3) and 128-bit quad suffix Q type (4).
- #endif
- : 5>; // All Generic multiprecision types.
- // std::cout << "\ntag type = " << tag_type << std::endl; // error C2275: 'tag_type': illegal use of this type as an expression.
- return lambert_w0_small_z(x, pol, tag_type());
- } // template <typename T> T lambert_w0_small_z(T x)
- //! Specialization of float (32-bit) series expansion used for small z (abs(z) < 0.05).
- // Only 9 Coefficients are computed to 21 decimal digits precision, ample for 32-bit float used by most platforms.
- // Taylor series coefficients used are computed by Wolfram to 50 decimal digits using instruction
- // N[InverseSeries[Series[z Exp[z],{z,0,34}]],50],
- // as proposed by Tosio Fukushima and implemented by Darko Veberic.
- template <typename T, typename Policy>
- T lambert_w0_small_z(T z, const Policy&, std::integral_constant<int, 0> const&)
- {
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::streamsize prec = std::cout.precision(std::numeric_limits<T>::max_digits10); // Save.
- std::cout << "\ntag_type 0 float lambert_w0_small_z called with z = " << z << " using " << 9 << " terms of precision "
- << std::numeric_limits<float>::max_digits10 << " decimal digits. " << std::endl;
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- T result =
- z * (1 - // j1 z^1 term = 1
- z * (1 - // j2 z^2 term = -1
- z * (static_cast<float>(3uLL) / 2uLL - // 3/2 // j3 z^3 term = 1.5.
- z * (2.6666666666666666667F - // 8/3 // j4
- z * (5.2083333333333333333F - // -125/24 // j5
- z * (10.8F - // j6
- z * (23.343055555555555556F - // j7
- z * (52.012698412698412698F - // j8
- z * 118.62522321428571429F)))))))); // j9
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::cout << "return w = " << result << std::endl;
- std::cout.precision(prec); // Restore.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- return result;
- } // template <typename T> T lambert_w0_small_z(T x, std::integral_constant<int, 0> const&)
- //! Specialization of double (64-bit double) series expansion used for small z (abs(z) < 0.05).
- // 17 Coefficients are computed to 21 decimal digits precision suitable for 64-bit double used by most platforms.
- // Taylor series coefficients used are computed by Wolfram to 50 decimal digits using instruction
- // N[InverseSeries[Series[z Exp[z],{z,0,34}]],50], as proposed by Tosio Fukushima and implemented by Veberic.
- template <typename T, typename Policy>
- T lambert_w0_small_z(const T z, const Policy&, std::integral_constant<int, 1> const&)
- {
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::streamsize prec = std::cout.precision(std::numeric_limits<T>::max_digits10); // Save.
- std::cout << "\ntag_type 1 double lambert_w0_small_z called with z = " << z << " using " << 17 << " terms of precision, "
- << std::numeric_limits<double>::max_digits10 << " decimal digits. " << std::endl;
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- T result =
- z * (1. - // j1 z^1
- z * (1. - // j2 z^2
- z * (1.5 - // 3/2 // j3 z^3
- z * (2.6666666666666666667 - // 8/3 // j4
- z * (5.2083333333333333333 - // -125/24 // j5
- z * (10.8 - // j6
- z * (23.343055555555555556 - // j7
- z * (52.012698412698412698 - // j8
- z * (118.62522321428571429 - // j9
- z * (275.57319223985890653 - // j10
- z * (649.78717234347442681 - // j11
- z * (1551.1605194805194805 - // j12
- z * (3741.4497029592385495 - // j13
- z * (9104.5002411580189358 - // j14
- z * (22324.308512706601434 - // j15
- z * (55103.621972903835338 - // j16
- z * 136808.86090394293563)))))))))))))))); // j17 z^17
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::cout << "return w = " << result << std::endl;
- std::cout.precision(prec); // Restore.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- return result;
- } // T lambert_w0_small_z(const T z, std::integral_constant<int, 1> const&)
- //! Specialization of long double (80-bit double extended) series expansion used for small z (abs(z) < 0.05).
- // 21 Coefficients are computed to 21 decimal digits precision suitable for 80-bit long double used by some
- // platforms including GCC and Clang when generating for Intel X86 floating-point processors with 80-bit operations enabled (the default).
- // (This is NOT used by Microsoft Visual Studio where double and long always both use only 64-bit type.
- // Nor used for 128-bit float128.)
- template <typename T, typename Policy>
- T lambert_w0_small_z(const T z, const Policy&, std::integral_constant<int, 2> const&)
- {
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::streamsize precision = std::cout.precision(std::numeric_limits<T>::max_digits10); // Save.
- std::cout << "\ntag_type 2 long double (80-bit double extended) lambert_w0_small_z called with z = " << z << " using " << 21 << " terms of precision, "
- << std::numeric_limits<long double>::max_digits10 << " decimal digits. " << std::endl;
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- // T result =
- // z * (1.L - // j1 z^1
- // z * (1.L - // j2 z^2
- // z * (1.5L - // 3/2 // j3
- // z * (2.6666666666666666667L - // 8/3 // j4
- // z * (5.2083333333333333333L - // -125/24 // j5
- // z * (10.800000000000000000L - // j6
- // z * (23.343055555555555556L - // j7
- // z * (52.012698412698412698L - // j8
- // z * (118.62522321428571429L - // j9
- // z * (275.57319223985890653L - // j10
- // z * (649.78717234347442681L - // j11
- // z * (1551.1605194805194805L - // j12
- // z * (3741.4497029592385495L - // j13
- // z * (9104.5002411580189358L - // j14
- // z * (22324.308512706601434L - // j15
- // z * (55103.621972903835338L - // j16
- // z * (136808.86090394293563L - // j17 z^17 last term used by Fukushima double.
- // z * (341422.050665838363317L - // z^18
- // z * (855992.9659966075514633L - // z^19
- // z * (2.154990206091088289321e6L - // z^20
- // z * 5.4455529223144624316423e6L // z^21
- // ))))))))))))))))))));
- //
- T result =
- z * (1.L - // z j1
- z * (1.L - // z^2
- z * (1.500000000000000000000000000000000L - // z^3
- z * (2.666666666666666666666666666666666L - // z ^ 4
- z * (5.208333333333333333333333333333333L - // z ^ 5
- z * (10.80000000000000000000000000000000L - // z ^ 6
- z * (23.34305555555555555555555555555555L - // z ^ 7
- z * (52.01269841269841269841269841269841L - // z ^ 8
- z * (118.6252232142857142857142857142857L - // z ^ 9
- z * (275.5731922398589065255731922398589L - // z ^ 10
- z * (649.7871723434744268077601410934744L - // z ^ 11
- z * (1551.160519480519480519480519480519L - // z ^ 12
- z * (3741.449702959238549516327294105071L - //z ^ 13
- z * (9104.500241158018935796713574491352L - // z ^ 14
- z * (22324.308512706601434280005708577137L - // z ^ 15
- z * (55103.621972903835337697771560205422L - // z ^ 16
- z * (136808.86090394293563342215789305736L - // z ^ 17
- z * (341422.05066583836331735491399356945L - // z^18
- z * (855992.9659966075514633630250633224L - // z^19
- z * (2.154990206091088289321708745358647e6L // z^20 distance -5 without term 20
- ))))))))))))))))))));
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::cout << "return w = " << result << std::endl;
- std::cout.precision(precision); // Restore.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- return result;
- } // long double lambert_w0_small_z(const T z, std::integral_constant<int, 1> const&)
- //! Specialization of 128-bit long double series expansion used for small z (abs(z) < 0.05).
- // 34 Taylor series coefficients used are computed by Wolfram to 50 decimal digits using instruction
- // N[InverseSeries[Series[z Exp[z],{z,0,34}]],50],
- // and are suffixed by L as they are assumed of type long double.
- // (This is NOT used for 128-bit quad boost::multiprecision::float128 type which required a suffix Q
- // nor multiprecision type cpp_bin_float_quad that can only be initialised at full precision of the type
- // constructed with a decimal digit string like "2.6666666666666666666666666666666666666666666666667".)
- template <typename T, typename Policy>
- T lambert_w0_small_z(const T z, const Policy&, std::integral_constant<int, 3> const&)
- {
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::streamsize precision = std::cout.precision(std::numeric_limits<T>::max_digits10); // Save.
- std::cout << "\ntag_type 3 long double (128-bit) lambert_w0_small_z called with z = " << z << " using " << 17 << " terms of precision, "
- << std::numeric_limits<double>::max_digits10 << " decimal digits. " << std::endl;
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- T result =
- z * (1.L - // j1
- z * (1.L - // j2
- z * (1.5L - // 3/2 // j3
- z * (2.6666666666666666666666666666666666L - // 8/3 // j4
- z * (5.2052083333333333333333333333333333L - // -125/24 // j5
- z * (10.800000000000000000000000000000000L - // j6
- z * (23.343055555555555555555555555555555L - // j7
- z * (52.0126984126984126984126984126984126L - // j8
- z * (118.625223214285714285714285714285714L - // j9
- z * (275.57319223985890652557319223985890L - // * z ^ 10 - // j10
- z * (649.78717234347442680776014109347442680776014109347L - // j11
- z * (1551.1605194805194805194805194805194805194805194805L - // j12
- z * (3741.4497029592385495163272941050718828496606274384L - // j13
- z * (9104.5002411580189357967135744913522691300469078247L - // j14
- z * (22324.308512706601434280005708577137148565719994291L - // j15
- z * (55103.621972903835337697771560205422639285073147507L - // j16
- z * 136808.86090394293563342215789305736395683485630576L // j17
- ))))))))))))))));
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::cout << "return w = " << result << std::endl;
- std::cout.precision(precision); // Restore.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- return result;
- } // T lambert_w0_small_z(const T z, std::integral_constant<int, 3> const&)
- //! Specialization of 128-bit quad series expansion used for small z (abs(z) < 0.05).
- // 34 Taylor series coefficients used were computed by Wolfram to 50 decimal digits using instruction
- // N[InverseSeries[Series[z Exp[z],{z,0,34}]],50],
- // and are suffixed by Q as they are assumed of type quad.
- // This could be used for 128-bit quad (which requires a suffix Q for full precision).
- // But experiments with GCC 7.2.0 show that while this gives full 128-bit precision
- // when the -f-ext-numeric-literals option is in force and the libquadmath library available,
- // over the range -0.049 to +0.049,
- // it is slightly slower than getting a double approximation followed by a single Halley step.
- #ifdef BOOST_HAS_FLOAT128
- template <typename T, typename Policy>
- T lambert_w0_small_z(const T z, const Policy&, std::integral_constant<int, 4> const&)
- {
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::streamsize precision = std::cout.precision(std::numeric_limits<T>::max_digits10); // Save.
- std::cout << "\ntag_type 4 128-bit quad float128 lambert_w0_small_z called with z = " << z << " using " << 34 << " terms of precision, "
- << std::numeric_limits<float128>::max_digits10 << " max decimal digits." << std::endl;
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- T result =
- z * (1.Q - // z j1
- z * (1.Q - // z^2
- z * (1.500000000000000000000000000000000Q - // z^3
- z * (2.666666666666666666666666666666666Q - // z ^ 4
- z * (5.208333333333333333333333333333333Q - // z ^ 5
- z * (10.80000000000000000000000000000000Q - // z ^ 6
- z * (23.34305555555555555555555555555555Q - // z ^ 7
- z * (52.01269841269841269841269841269841Q - // z ^ 8
- z * (118.6252232142857142857142857142857Q - // z ^ 9
- z * (275.5731922398589065255731922398589Q - // z ^ 10
- z * (649.7871723434744268077601410934744Q - // z ^ 11
- z * (1551.160519480519480519480519480519Q - // z ^ 12
- z * (3741.449702959238549516327294105071Q - //z ^ 13
- z * (9104.500241158018935796713574491352Q - // z ^ 14
- z * (22324.308512706601434280005708577137Q - // z ^ 15
- z * (55103.621972903835337697771560205422Q - // z ^ 16
- z * (136808.86090394293563342215789305736Q - // z ^ 17
- z * (341422.05066583836331735491399356945Q - // z^18
- z * (855992.9659966075514633630250633224Q - // z^19
- z * (2.154990206091088289321708745358647e6Q - // 20
- z * (5.445552922314462431642316420035073e6Q - // 21
- z * (1.380733000216662949061923813184508e7Q - // 22
- z * (3.511704498513923292853869855945334e7Q - // 23
- z * (8.956800256102797693072819557780090e7Q - // 24
- z * (2.290416846187949813964782641734774e8Q - // 25
- z * (5.871035041171798492020292225245235e8Q - // 26
- z * (1.508256053857792919641317138812957e9Q - // 27
- z * (3.882630161293188940385873468413841e9Q - // 28
- z * (1.001394313665482968013913601565723e10Q - // 29
- z * (2.587356736265760638992878359024929e10Q - // 30
- z * (6.696209709358073856946120522333454e10Q - // 31
- z * (1.735711659599198077777078238043644e11Q - // 32
- z * (4.505680465642353886756098108484670e11Q - // 33
- z * (1.171223178256487391904047636564823e12Q //z^34
- ))))))))))))))))))))))))))))))))));
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::cout << "return w = " << result << std::endl;
- std::cout.precision(precision); // Restore.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- return result;
- } // T lambert_w0_small_z(const T z, std::integral_constant<int, 4> const&) float128
- #else
- template <typename T, typename Policy>
- inline T lambert_w0_small_z(const T z, const Policy& pol, std::integral_constant<int, 4> const&)
- {
- return lambert_w0_small_z(z, pol, std::integral_constant<int, 5>());
- }
- #endif // BOOST_HAS_FLOAT128
- //! Series functor to compute series term using pow and factorial.
- //! \details Functor is called after evaluating polynomial with the coefficients as rationals below.
- template <typename T>
- struct lambert_w0_small_z_series_term
- {
- using result_type = T;
- //! \param _z Lambert W argument z.
- //! \param -term -pow<18>(z) / 6402373705728000uLL
- //! \param _k number of terms == initially 18
- // Note *after* evaluating N terms, its internal state has k = N and term = (-1)^N z^N.
- lambert_w0_small_z_series_term(T _z, T _term, int _k)
- : k(_k), z(_z), term(_term) { }
- T operator()()
- { // Called by sum_series until needs precision set by factor (policy::get_epsilon).
- using std::pow;
- ++k;
- term *= -z / k;
- //T t = pow(z, k) * pow(T(k), -1 + k) / factorial<T>(k); // (z^k * k(k-1)^k) / k!
- T result = term * pow(T(k), -1 + k); // term * k^(k-1)
- // std::cout << " k = " << k << ", term = " << term << ", result = " << result << std::endl;
- return result; //
- }
- private:
- int k;
- T z;
- T term;
- }; // template <typename T> struct lambert_w0_small_z_series_term
- //! Generic variant for T a User-defined types like Boost.Multiprecision.
- template <typename T, typename Policy>
- inline T lambert_w0_small_z(T z, const Policy& pol, std::integral_constant<int, 5> const&)
- {
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::streamsize precision = std::cout.precision(std::numeric_limits<T>::max_digits10); // Save.
- std::cout << "Generic lambert_w0_small_z called with z = " << z << " using as many terms needed for precision." << std::endl;
- std::cout << "Argument z is of type " << typeid(T).name() << std::endl;
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- // First several terms of the series are tabulated and evaluated as a polynomial:
- // this will save us a bunch of expensive calls to pow.
- // Then our series functor is initialized "as if" it had already reached term 18,
- // enough evaluation of built-in 64-bit double and float (and 80-bit long double?) types.
- // Coefficients should be stored such that the coefficients for the x^i terms are in poly[i].
- static const T coeff[] =
- {
- 0, // z^0 Care: zeroth term needed by tools::evaluate_polynomial, but not in the Wolfram equation, so indexes are one different!
- 1, // z^1 term.
- -1, // z^2 term
- static_cast<T>(3uLL) / 2uLL, // z^3 term.
- -static_cast<T>(8uLL) / 3uLL, // z^4
- static_cast<T>(125uLL) / 24uLL, // z^5
- -static_cast<T>(54uLL) / 5uLL, // z^6
- static_cast<T>(16807uLL) / 720uLL, // z^7
- -static_cast<T>(16384uLL) / 315uLL, // z^8
- static_cast<T>(531441uLL) / 4480uLL, // z^9
- -static_cast<T>(156250uLL) / 567uLL, // z^10
- static_cast<T>(2357947691uLL) / 3628800uLL, // z^11
- -static_cast<T>(2985984uLL) / 1925uLL, // z^12
- static_cast<T>(1792160394037uLL) / 479001600uLL, // z^13
- -static_cast<T>(7909306972uLL) / 868725uLL, // z^14
- static_cast<T>(320361328125uLL) / 14350336uLL, // z^15
- -static_cast<T>(35184372088832uLL) / 638512875uLL, // z^16
- static_cast<T>(2862423051509815793uLL) / 20922789888000uLL, // z^17 term
- -static_cast<T>(5083731656658uLL) / 14889875uLL,
- // z^18 term. = 136808.86090394293563342215789305735851647769682393
- // z^18 is biggest that can be computed as rational using the largest possible uLL integers,
- // so higher terms cannot be potentially compiler-computed as uLL rationals.
- // Wolfram (5083731656658 z ^ 18) / 14889875 or
- // -341422.05066583836331735491399356945575432970390954 z^18
- // See note below calling the functor to compute another term,
- // sufficient for 80-bit long double precision.
- // Wolfram -341422.05066583836331735491399356945575432970390954 z^19 term.
- // (5480386857784802185939 z^19)/6402373705728000
- // But now this variant is not used to compute long double
- // as specializations are provided above.
- }; // static const T coeff[]
- /*
- Table of 19 computed coefficients:
- #0 0
- #1 1
- #2 -1
- #3 1.5
- #4 -2.6666666666666666666666666666666665382713370408509
- #5 5.2083333333333333333333333333333330765426740817019
- #6 -10.800000000000000000000000000000000616297582203915
- #7 23.343055555555555555555555555555555076212991619177
- #8 -52.012698412698412698412698412698412659282693193402
- #9 118.62522321428571428571428571428571146835390992496
- #10 -275.57319223985890652557319223985891400375196748314
- #11 649.7871723434744268077601410934743969785223845882
- #12 -1551.1605194805194805194805194805194947599566007429
- #13 3741.4497029592385495163272941050719510009019331763
- #14 -9104.5002411580189357967135744913524243896052869184
- #15 22324.308512706601434280005708577137322392070452582
- #16 -55103.621972903835337697771560205423203318720697224
- #17 136808.86090394293563342215789305735851647769682393
- 136808.86090394293563342215789305735851647769682393 == Exactly same as Wolfram computed value.
- #18 -341422.05066583836331735491399356947486381600607416
- 341422.05066583836331735491399356945575432970390954 z^19 Wolfram value differs at 36 decimal digit, as expected.
- */
- using boost::math::policies::get_epsilon; // for type T.
- using boost::math::tools::sum_series;
- using boost::math::tools::evaluate_polynomial;
- // http://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/roots/rational.html
- // std::streamsize prec = std::cout.precision(std::numeric_limits <T>::max_digits10);
- T result = evaluate_polynomial(coeff, z);
- // template <std::size_t N, typename T, typename V>
- // V evaluate_polynomial(const T(&poly)[N], const V& val);
- // Size of coeff found from N
- //std::cout << "evaluate_polynomial(coeff, z); == " << result << std::endl;
- //std::cout << "result = " << result << std::endl;
- // It's an artefact of the way I wrote the functor: *after* evaluating N
- // terms, its internal state has k = N and term = (-1)^N z^N. So after
- // evaluating 18 terms, we initialize the functor to the term we've just
- // evaluated, and then when it's called, it increments itself to the next term.
- // So 18!is 6402373705728000, which is where that comes from.
- // The 19th coefficient of the polynomial is actually, 19 ^ 18 / 19!=
- // 104127350297911241532841 / 121645100408832000 which after removing GCDs
- // reduces down to Wolfram rational 5480386857784802185939 / 6402373705728000.
- // Wolfram z^19 term +(5480386857784802185939 z^19) /6402373705728000
- // +855992.96599660755146336302506332246623424823099755 z^19
- //! Evaluate Functor.
- lambert_w0_small_z_series_term<T> s(z, -pow<18>(z) / 6402373705728000uLL, 18);
- // Temporary to list the coefficients.
- //std::cout << " Table of coefficients" << std::endl;
- //std::streamsize saved_precision = std::cout.precision(50);
- //for (size_t i = 0; i != 19; i++)
- //{
- // std::cout << "#" << i << " " << coeff[i] << std::endl;
- //}
- //std::cout.precision(saved_precision);
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); // Max iterations from policy.
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- std::cout << "max iter from policy = " << max_iter << std::endl;
- // // max iter from policy = 1000000 is default.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES
- result = sum_series(s, get_epsilon<T, Policy>(), max_iter, result);
- // result == evaluate_polynomial.
- //sum_series(Functor& func, int bits, std::uintmax_t& max_terms, const U& init_value)
- // std::cout << "sum_series(s, get_epsilon<T, Policy>(), max_iter, result); = " << result << std::endl;
- //T epsilon = get_epsilon<T, Policy>();
- //std::cout << "epsilon from policy = " << epsilon << std::endl;
- // epsilon from policy = 1.93e-34 for T == quad
- // 5.35e-51 for t = cpp_bin_float_50
- // std::cout << " get eps = " << get_epsilon<T, Policy>() << std::endl; // quad eps = 1.93e-34, bin_float_50 eps = 5.35e-51
- policies::check_series_iterations<T>("boost::math::lambert_w0_small_z<%1%>(%1%)", max_iter, pol);
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES_ITERATIONS
- std::cout << "z = " << z << " needed " << max_iter << " iterations." << std::endl;
- std::cout.precision(prec); // Restore.
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES_ITERATIONS
- return result;
- } // template <typename T, typename Policy> inline T lambert_w0_small_z_series(T z, const Policy& pol)
- // Approximate lambert_w0 (used for z values that are outside range of lookup table or rational functions)
- // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
- template <typename T>
- inline T lambert_w0_approx(T z)
- {
- BOOST_MATH_STD_USING
- T lz = log(z);
- T llz = log(lz);
- T w = lz - llz + (llz / lz); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
- return w;
- // std::cout << "w max " << max_w << std::endl; // double 703.227
- }
- //////////////////////////////////////////////////////////////////////////////////////////
- //! \brief Lambert_w0 implementations for float, double and higher precisions.
- //! 3rd parameter used to select which version is used.
- //! /details Rational polynomials are provided for several range of argument z.
- //! For very small values of z, and for z very near the branch singularity at -e^-1 (~= -0.367879),
- //! two other series functions are used.
- //! float precision polynomials are used for 32-bit (usually float) precision (for speed)
- //! double precision polynomials are used for 64-bit (usually double) precision.
- //! For higher precisions, a 64-bit double approximation is computed first,
- //! and then refined using Halley iterations.
- template <typename T>
- inline T do_get_near_singularity_param(T z)
- {
- BOOST_MATH_STD_USING
- const T p2 = 2 * (boost::math::constants::e<T>() * z + 1);
- const T p = sqrt(p2);
- return p;
- }
- template <typename T, typename Policy>
- inline T get_near_singularity_param(T z, const Policy)
- {
- using value_type = typename policies::evaluation<T, Policy>::type;
- return static_cast<T>(do_get_near_singularity_param(static_cast<value_type>(z)));
- }
- // Forward declarations:
- //template <typename T, typename Policy> T lambert_w0_small_z(T z, const Policy& pol);
- //template <typename T, typename Policy>
- //T lambert_w0_imp(T w, const Policy& pol, const std::integral_constant<int, 0>&); // 32 bit usually float.
- //template <typename T, typename Policy>
- //T lambert_w0_imp(T w, const Policy& pol, const std::integral_constant<int, 1>&); // 64 bit usually double.
- //template <typename T, typename Policy>
- //T lambert_w0_imp(T w, const Policy& pol, const std::integral_constant<int, 2>&); // 80-bit long double.
- template <typename T>
- T lambert_w_positive_rational_float(T z)
- {
- BOOST_MATH_STD_USING
- if (z < 2)
- {
- if (z < 0.5)
- { // 0.05 < z < 0.5
- // Maximum Deviation Found: 2.993e-08
- // Expected Error Term : 2.993e-08
- // Maximum Relative Change in Control Points : 7.555e-04 Y offset : -8.196592331e-01
- static const T Y = 8.196592331e-01f;
- static const T P[] = {
- 1.803388345e-01f,
- -4.820256838e-01f,
- -1.068349741e+00f,
- -3.506624319e-02f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 2.871703469e+00f,
- 1.690949264e+00f,
- };
- return z * (Y + boost::math::tools::evaluate_polynomial(P, z) / boost::math::tools::evaluate_polynomial(Q, z));
- }
- else
- { // 0.5 < z < 2
- // Max error in interpolated form: 1.018e-08
- static const T Y = 5.503368378e-01f;
- static const T P[] = {
- 4.493332766e-01f,
- 2.543432707e-01f,
- -4.808788799e-01f,
- -1.244425316e-01f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 2.780661241e+00f,
- 1.830840318e+00f,
- 2.407221031e-01f,
- };
- return z * (Y + boost::math::tools::evaluate_rational(P, Q, z));
- }
- }
- else if (z < 6)
- {
- // 2 < z < 6
- // Max error in interpolated form: 2.944e-08
- static const T Y = 1.162393570e+00f;
- static const T P[] = {
- -1.144183394e+00f,
- -4.712732855e-01f,
- 1.563162512e-01f,
- 1.434010911e-02f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 1.192626340e+00f,
- 2.295580708e-01f,
- 5.477869455e-03f,
- };
- return Y + boost::math::tools::evaluate_rational(P, Q, z);
- }
- else if (z < 18)
- {
- // 6 < z < 18
- // Max error in interpolated form: 5.893e-08
- static const T Y = 1.809371948e+00f;
- static const T P[] = {
- -1.689291769e+00f,
- -3.337812742e-01f,
- 3.151434873e-02f,
- 1.134178734e-03f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 5.716915685e-01f,
- 4.489521292e-02f,
- 4.076716763e-04f,
- };
- return Y + boost::math::tools::evaluate_rational(P, Q, z);
- }
- else if (z < 9897.12905874) // 2.8 < log(z) < 9.2
- {
- // Max error in interpolated form: 1.771e-08
- static const T Y = -1.402973175e+00f;
- static const T P[] = {
- 1.966174312e+00f,
- 2.350864728e-01f,
- -5.098074353e-02f,
- -1.054818339e-02f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 4.388208264e-01f,
- 8.316639634e-02f,
- 3.397187918e-03f,
- -1.321489743e-05f,
- };
- T log_w = log(z);
- return log_w + Y + boost::math::tools::evaluate_polynomial(P, log_w) / boost::math::tools::evaluate_polynomial(Q, log_w);
- }
- else if (z < 7.896296e+13) // 9.2 < log(z) <= 32
- {
- // Max error in interpolated form: 5.821e-08
- static const T Y = -2.735729218e+00f;
- static const T P[] = {
- 3.424903470e+00f,
- 7.525631787e-02f,
- -1.427309584e-02f,
- -1.435974178e-05f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 2.514005579e-01f,
- 6.118994652e-03f,
- -1.357889535e-05f,
- 7.312865624e-08f,
- };
- T log_w = log(z);
- return log_w + Y + boost::math::tools::evaluate_polynomial(P, log_w) / boost::math::tools::evaluate_polynomial(Q, log_w);
- }
- else // 32 < log(z) < 100
- {
- // Max error in interpolated form: 1.491e-08
- static const T Y = -4.012863159e+00f;
- static const T P[] = {
- 4.431629226e+00f,
- 2.756690487e-01f,
- -2.992956930e-03f,
- -4.912259384e-05f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 2.015434591e-01f,
- 4.949426142e-03f,
- 1.609659944e-05f,
- -5.111523436e-09f,
- };
- T log_w = log(z);
- return log_w + Y + boost::math::tools::evaluate_polynomial(P, log_w) / boost::math::tools::evaluate_polynomial(Q, log_w);
- }
- }
- template <typename T, typename Policy>
- T lambert_w_negative_rational_float(T z, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if (z > -0.27)
- {
- if (z < -0.051)
- {
- // -0.27 < z < -0.051
- // Max error in interpolated form: 5.080e-08
- static const T Y = 1.255809784e+00f;
- static const T P[] = {
- -2.558083412e-01f,
- -2.306524098e+00f,
- -5.630887033e+00f,
- -3.803974556e+00f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 5.107680783e+00f,
- 7.914062868e+00f,
- 3.501498501e+00f,
- };
- return z * (Y + boost::math::tools::evaluate_rational(P, Q, z));
- }
- else
- {
- // Very small z so use a series function.
- return lambert_w0_small_z(z, pol);
- }
- }
- else if (z > -0.3578794411714423215955237701)
- { // Very close to branch singularity.
- // Max error in interpolated form: 5.269e-08
- static const T Y = 1.220928431e-01f;
- static const T P[] = {
- -1.221787446e-01f,
- -6.816155875e+00f,
- 7.144582035e+01f,
- 1.128444390e+03f,
- };
- static const T Q[] = {
- 1.000000000e+00f,
- 6.480326790e+01f,
- 1.869145243e+02f,
- -1.361804274e+03f,
- 1.117826726e+03f,
- };
- T d = z + 0.367879441171442321595523770161460867445811f;
- return -d / (Y + boost::math::tools::evaluate_polynomial(P, d) / boost::math::tools::evaluate_polynomial(Q, d));
- }
- else
- {
- // z is very close (within 0.01) of the singularity at e^-1.
- return lambert_w_singularity_series(get_near_singularity_param(z, pol));
- }
- }
- //! Lambert_w0 @b 'float' implementation, selected when T is 32-bit precision.
- template <typename T, typename Policy>
- inline T lambert_w0_imp(T z, const Policy& pol, const std::integral_constant<int, 1>&)
- {
- static const char* function = "boost::math::lambert_w0<%1%>"; // For error messages.
- BOOST_MATH_STD_USING // Aid ADL of std functions.
- if ((boost::math::isnan)(z))
- {
- return boost::math::policies::raise_domain_error<T>(function, "Expected a value > -e^-1 (-0.367879...) but got %1%.", z, pol);
- }
- if ((boost::math::isinf)(z))
- {
- return boost::math::policies::raise_overflow_error<T>(function, "Expected a finite value but got %1%.", z, pol);
- }
- if (z >= 0.05) // Fukushima switch point.
- // if (z >= 0.045) // 34 terms makes 128-bit 'exact' below 0.045.
- { // Normal ranges using several rational polynomials.
- return lambert_w_positive_rational_float(z);
- }
- else if (z <= -0.3678794411714423215955237701614608674458111310f)
- {
- if (z < -0.3678794411714423215955237701614608674458111310f)
- return boost::math::policies::raise_domain_error<T>(function, "Expected z >= -e^-1 (-0.367879...) but got %1%.", z, pol);
- return -1;
- }
- else // z < 0.05
- {
- return lambert_w_negative_rational_float(z, pol);
- }
- } // T lambert_w0_imp(T z, const Policy& pol, const std::integral_constant<int, 1>&) for 32-bit usually float.
- template <typename T>
- T lambert_w_positive_rational_double(T z)
- {
- BOOST_MATH_STD_USING
- if (z < 2)
- {
- if (z < 0.5)
- {
- // Max error in interpolated form: 2.255e-17
- static const T offset = 8.19659233093261719e-01;
- static const T P[] = {
- 1.80340766906685177e-01,
- 3.28178241493119307e-01,
- -2.19153620687139706e+00,
- -7.24750929074563990e+00,
- -7.28395876262524204e+00,
- -2.57417169492512916e+00,
- -2.31606948888704503e-01
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 7.36482529307436604e+00,
- 2.03686007856430677e+01,
- 2.62864592096657307e+01,
- 1.59742041380858333e+01,
- 4.03760534788374589e+00,
- 2.91327346750475362e-01
- };
- return z * (offset + boost::math::tools::evaluate_polynomial(P, z) / boost::math::tools::evaluate_polynomial(Q, z));
- }
- else
- {
- // Max error in interpolated form: 3.806e-18
- static const T offset = 5.50335884094238281e-01;
- static const T P[] = {
- 4.49664083944098322e-01,
- 1.90417666196776909e+00,
- 1.99951368798255994e+00,
- -6.91217310299270265e-01,
- -1.88533935998617058e+00,
- -7.96743968047750836e-01,
- -1.02891726031055254e-01,
- -3.09156013592636568e-03
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 6.45854489419584014e+00,
- 1.54739232422116048e+01,
- 1.72606164253337843e+01,
- 9.29427055609544096e+00,
- 2.29040824649748117e+00,
- 2.21610620995418981e-01,
- 5.70597669908194213e-03
- };
- return z * (offset + boost::math::tools::evaluate_rational(P, Q, z));
- }
- }
- else if (z < 6)
- {
- // 2 < z < 6
- // Max error in interpolated form: 1.216e-17
- static const T Y = 1.16239356994628906e+00;
- static const T P[] = {
- -1.16230494982099475e+00,
- -3.38528144432561136e+00,
- -2.55653717293161565e+00,
- -3.06755172989214189e-01,
- 1.73149743765268289e-01,
- 3.76906042860014206e-02,
- 1.84552217624706666e-03,
- 1.69434126904822116e-05,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 3.77187616711220819e+00,
- 4.58799960260143701e+00,
- 2.24101228462292447e+00,
- 4.54794195426212385e-01,
- 3.60761772095963982e-02,
- 9.25176499518388571e-04,
- 4.43611344705509378e-06,
- };
- return Y + boost::math::tools::evaluate_rational(P, Q, z);
- }
- else if (z < 18)
- {
- // 6 < z < 18
- // Max error in interpolated form: 1.985e-19
- static const T offset = 1.80937194824218750e+00;
- static const T P[] =
- {
- -1.80690935424793635e+00,
- -3.66995929380314602e+00,
- -1.93842957940149781e+00,
- -2.94269984375794040e-01,
- 1.81224710627677778e-03,
- 2.48166798603547447e-03,
- 1.15806592415397245e-04,
- 1.43105573216815533e-06,
- 3.47281483428369604e-09
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 2.57319080723908597e+00,
- 1.96724528442680658e+00,
- 5.84501352882650722e-01,
- 7.37152837939206240e-02,
- 3.97368430940416778e-03,
- 8.54941838187085088e-05,
- 6.05713225608426678e-07,
- 8.17517283816615732e-10
- };
- return offset + boost::math::tools::evaluate_rational(P, Q, z);
- }
- else if (z < 9897.12905874) // 2.8 < log(z) < 9.2
- {
- // Max error in interpolated form: 1.195e-18
- static const T Y = -1.40297317504882812e+00;
- static const T P[] = {
- 1.97011826279311924e+00,
- 1.05639945701546704e+00,
- 3.33434529073196304e-01,
- 3.34619153200386816e-02,
- -5.36238353781326675e-03,
- -2.43901294871308604e-03,
- -2.13762095619085404e-04,
- -4.85531936495542274e-06,
- -2.02473518491905386e-08,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 8.60107275833921618e-01,
- 4.10420467985504373e-01,
- 1.18444884081994841e-01,
- 2.16966505556021046e-02,
- 2.24529766630769097e-03,
- 9.82045090226437614e-05,
- 1.36363515125489502e-06,
- 3.44200749053237945e-09,
- };
- T log_w = log(z);
- return log_w + Y + boost::math::tools::evaluate_rational(P, Q, log_w);
- }
- else if (z < 7.896296e+13) // 9.2 < log(z) <= 32
- {
- // Max error in interpolated form: 6.529e-18
- static const T Y = -2.73572921752929688e+00;
- static const T P[] = {
- 3.30547638424076217e+00,
- 1.64050071277550167e+00,
- 4.57149576470736039e-01,
- 4.03821227745424840e-02,
- -4.99664976882514362e-04,
- -1.28527893803052956e-04,
- -2.95470325373338738e-06,
- -1.76662025550202762e-08,
- -1.98721972463709290e-11,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 6.91472559412458759e-01,
- 2.48154578891676774e-01,
- 4.60893578284335263e-02,
- 3.60207838982301946e-03,
- 1.13001153242430471e-04,
- 1.33690948263488455e-06,
- 4.97253225968548872e-09,
- 3.39460723731970550e-12,
- };
- T log_w = log(z);
- return log_w + Y + boost::math::tools::evaluate_rational(P, Q, log_w);
- }
- else if (z < 2.6881171e+43) // 32 < log(z) < 100
- {
- // Max error in interpolated form: 2.015e-18
- static const T Y = -4.01286315917968750e+00;
- static const T P[] = {
- 5.07714858354309672e+00,
- -3.32994414518701458e+00,
- -8.61170416909864451e-01,
- -4.01139705309486142e-02,
- -1.85374201771834585e-04,
- 1.08824145844270666e-05,
- 1.17216905810452396e-07,
- 2.97998248101385990e-10,
- 1.42294856434176682e-13,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- -4.85840770639861485e-01,
- -3.18714850604827580e-01,
- -3.20966129264610534e-02,
- -1.06276178044267895e-03,
- -1.33597828642644955e-05,
- -6.27900905346219472e-08,
- -9.35271498075378319e-11,
- -2.60648331090076845e-14,
- };
- T log_w = log(z);
- return log_w + Y + boost::math::tools::evaluate_rational(P, Q, log_w);
- }
- else // 100 < log(z) < 710
- {
- // Max error in interpolated form: 5.277e-18
- static const T Y = -5.70115661621093750e+00;
- static const T P[] = {
- 6.42275660145116698e+00,
- 1.33047964073367945e+00,
- 6.72008923401652816e-02,
- 1.16444069958125895e-03,
- 7.06966760237470501e-06,
- 5.48974896149039165e-09,
- -7.00379652018853621e-11,
- -1.89247635913659556e-13,
- -1.55898770790170598e-16,
- -4.06109208815303157e-20,
- -2.21552699006496737e-24,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 3.34498588416632854e-01,
- 2.51519862456384983e-02,
- 6.81223810622416254e-04,
- 7.94450897106903537e-06,
- 4.30675039872881342e-08,
- 1.10667669458467617e-10,
- 1.31012240694192289e-13,
- 6.53282047177727125e-17,
- 1.11775518708172009e-20,
- 3.78250395617836059e-25,
- };
- T log_w = log(z);
- return log_w + Y + boost::math::tools::evaluate_rational(P, Q, log_w);
- }
- }
- template <typename T, typename Policy>
- T lambert_w_negative_rational_double(T z, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if (z > -0.1)
- {
- if (z < -0.051)
- {
- // -0.1 < z < -0.051
- // Maximum Deviation Found: 4.402e-22
- // Expected Error Term : 4.240e-22
- // Maximum Relative Change in Control Points : 4.115e-03
- static const T Y = 1.08633995056152344e+00;
- static const T P[] = {
- -8.63399505615014331e-02,
- -1.64303871814816464e+00,
- -7.71247913918273738e+00,
- -1.41014495545382454e+01,
- -1.02269079949257616e+01,
- -2.17236002836306691e+00,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 7.44775406945739243e+00,
- 2.04392643087266541e+01,
- 2.51001961077774193e+01,
- 1.31256080849023319e+01,
- 2.11640324843601588e+00,
- };
- return z * (Y + boost::math::tools::evaluate_rational(P, Q, z));
- }
- else
- {
- // Very small z > 0.051:
- return lambert_w0_small_z(z, pol);
- }
- }
- else if (z > -0.2)
- {
- // -0.2 < z < -0.1
- // Maximum Deviation Found: 2.898e-20
- // Expected Error Term : 2.873e-20
- // Maximum Relative Change in Control Points : 3.779e-04
- static const T Y = 1.20359611511230469e+00;
- static const T P[] = {
- -2.03596115108465635e-01,
- -2.95029082937201859e+00,
- -1.54287922188671648e+01,
- -3.81185809571116965e+01,
- -4.66384358235575985e+01,
- -2.59282069989642468e+01,
- -4.70140451266553279e+00,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 9.57921436074599929e+00,
- 3.60988119290234377e+01,
- 6.73977699505546007e+01,
- 6.41104992068148823e+01,
- 2.82060127225153607e+01,
- 4.10677610657724330e+00,
- };
- return z * (Y + boost::math::tools::evaluate_rational(P, Q, z));
- }
- else if (z > -0.3178794411714423215955237)
- {
- // Max error in interpolated form: 6.996e-18
- static const T Y = 3.49680423736572266e-01;
- static const T P[] = {
- -3.49729841718749014e-01,
- -6.28207407760709028e+01,
- -2.57226178029669171e+03,
- -2.50271008623093747e+04,
- 1.11949239154711388e+05,
- 1.85684566607844318e+06,
- 4.80802490427638643e+06,
- 2.76624752134636406e+06,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 1.82717661215113000e+02,
- 8.00121119810280100e+03,
- 1.06073266717010129e+05,
- 3.22848993926057721e+05,
- -8.05684814514171256e+05,
- -2.59223192927265737e+06,
- -5.61719645211570871e+05,
- 6.27765369292636844e+04,
- };
- T d = z + 0.367879441171442321595523770161460867445811;
- return -d / (Y + boost::math::tools::evaluate_polynomial(P, d) / boost::math::tools::evaluate_polynomial(Q, d));
- }
- else if (z > -0.3578794411714423215955237701)
- {
- // Max error in interpolated form: 1.404e-17
- static const T Y = 5.00126481056213379e-02;
- static const T P[] = {
- -5.00173570682372162e-02,
- -4.44242461870072044e+01,
- -9.51185533619946042e+03,
- -5.88605699015429386e+05,
- -1.90760843597427751e+06,
- 5.79797663818311404e+08,
- 1.11383352508459134e+10,
- 5.67791253678716467e+10,
- 6.32694500716584572e+10,
- };
- static const T Q[] = {
- 1.00000000000000000e+00,
- 9.08910517489981551e+02,
- 2.10170163753340133e+05,
- 1.67858612416470327e+07,
- 4.90435561733227953e+08,
- 4.54978142622939917e+09,
- 2.87716585708739168e+09,
- -4.59414247951143131e+10,
- -1.72845216404874299e+10,
- };
- T d = z + 0.36787944117144232159552377016146086744581113103176804;
- return -d / (Y + boost::math::tools::evaluate_polynomial(P, d) / boost::math::tools::evaluate_polynomial(Q, d));
- }
- else
- { // z is very close (within 0.01) of the singularity at -e^-1,
- // so use a series expansion from R. M. Corless et al.
- const T p2 = 2 * (boost::math::constants::e<T>() * z + 1);
- const T p = sqrt(p2);
- return lambert_w_detail::lambert_w_singularity_series(p);
- }
- }
- //! Lambert_w0 @b 'double' implementation, selected when T is 64-bit precision.
- template <typename T, typename Policy>
- inline T lambert_w0_imp(T z, const Policy& pol, const std::integral_constant<int, 2>&)
- {
- static const char* function = "boost::math::lambert_w0<%1%>";
- BOOST_MATH_STD_USING // Aid ADL of std functions.
- // Detect unusual case of 32-bit double with a wider/64-bit long double
- BOOST_STATIC_ASSERT_MSG(std::numeric_limits<double>::digits >= 53,
- "Our double precision coefficients will be truncated, "
- "please file a bug report with details of your platform's floating point types "
- "- or possibly edit the coefficients to have "
- "an appropriate size-suffix for 64-bit floats on your platform - L?");
- if ((boost::math::isnan)(z))
- {
- return boost::math::policies::raise_domain_error<T>(function, "Expected a value > -e^-1 (-0.367879...) but got %1%.", z, pol);
- }
- if ((boost::math::isinf)(z))
- {
- return boost::math::policies::raise_overflow_error<T>(function, "Expected a finite value but got %1%.", z, pol);
- }
- if (z >= 0.05)
- {
- return lambert_w_positive_rational_double(z);
- }
- else if (z <= -0.36787944117144232159552377016146086744581113103176804) // Precision is max_digits10(cpp_bin_float_50).
- {
- if (z < -0.36787944117144232159552377016146086744581113103176804)
- {
- return boost::math::policies::raise_domain_error<T>(function, "Expected z >= -e^-1 (-0.367879...) but got %1%.", z, pol);
- }
- return -1;
- }
- else
- {
- return lambert_w_negative_rational_double(z, pol);
- }
- } // T lambert_w0_imp(T z, const Policy& pol, const std::integral_constant<int, 2>&) 64-bit precision, usually double.
- //! lambert_W0 implementation for extended precision types including
- //! long double (80-bit and 128-bit), ???
- //! quad float128, Boost.Multiprecision types like cpp_bin_float_quad, cpp_bin_float_50...
- template <typename T, typename Policy>
- inline T lambert_w0_imp(T z, const Policy& pol, const std::integral_constant<int, 0>&)
- {
- static const char* function = "boost::math::lambert_w0<%1%>";
- BOOST_MATH_STD_USING // Aid ADL of std functions.
- // Filter out special cases first:
- if ((boost::math::isnan)(z))
- {
- return boost::math::policies::raise_domain_error<T>(function, "Expected z >= -e^-1 (-0.367879...) but got %1%.", z, pol);
- }
- if (fabs(z) <= 0.05f)
- {
- // Very small z:
- return lambert_w0_small_z(z, pol);
- }
- if (z > (std::numeric_limits<double>::max)())
- {
- if ((boost::math::isinf)(z))
- {
- return policies::raise_overflow_error<T>(function, 0, pol);
- // Or might return infinity if available else max_value,
- // but other Boost.Math special functions raise overflow.
- }
- // z is larger than the largest double, so cannot use the polynomial to get an approximation,
- // so use the asymptotic approximation and Halley iterate:
- T w = lambert_w0_approx(z); // Make an inline function as also used elsewhere.
- //T lz = log(z);
- //T llz = log(lz);
- //T w = lz - llz + (llz / lz); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
- return lambert_w_halley_iterate(w, z);
- }
- if (z < -0.3578794411714423215955237701)
- { // Very close to branch point so rational polynomials are not usable.
- if (z <= -boost::math::constants::exp_minus_one<T>())
- {
- if (z == -boost::math::constants::exp_minus_one<T>())
- { // Exactly at the branch point singularity.
- return -1;
- }
- return boost::math::policies::raise_domain_error<T>(function, "Expected z >= -e^-1 (-0.367879...) but got %1%.", z, pol);
- }
- // z is very close (within 0.01) of the branch singularity at -e^-1
- // so use a series approximation proposed by Corless et al.
- const T p2 = 2 * (boost::math::constants::e<T>() * z + 1);
- const T p = sqrt(p2);
- T w = lambert_w_detail::lambert_w_singularity_series(p);
- return lambert_w_halley_iterate(w, z);
- }
- // Phew! If we get here we are in the normal range of the function,
- // so get a double precision approximation first, then iterate to full precision of T.
- // We define a tag_type that is:
- // true_type if there are so many digits precision wanted that iteration is necessary.
- // false_type if a single Halley step is sufficient.
- using precision_type = typename policies::precision<T, Policy>::type;
- using tag_type = std::integral_constant<bool,
- (precision_type::value == 0) || (precision_type::value > 113) ?
- true // Unknown at compile-time, variable/arbitrary, or more than float128 or cpp_bin_quad 128-bit precision.
- : false // float, double, float128, cpp_bin_quad 128-bit, so single Halley step.
- >;
- // For speed, we also cast z to type double when that is possible
- // if (std::is_constructible<double, T>() == true).
- T w = lambert_w0_imp(maybe_reduce_to_double(z, std::is_constructible<double, T>()), pol, std::integral_constant<int, 2>());
- return lambert_w_maybe_halley_iterate(w, z, tag_type());
- } // T lambert_w0_imp(T z, const Policy& pol, const std::integral_constant<int, 0>&) all extended precision types.
- // Lambert w-1 implementation
- // ==============================================================================================
- //! Lambert W for W-1 branch, -max(z) < z <= -1/e.
- // TODO is -max(z) allowed?
- template<typename T, typename Policy>
- T lambert_wm1_imp(const T z, const Policy& pol)
- {
- // Catch providing an integer value as parameter x to lambert_w, for example, lambert_w(1).
- // Need to ensure it is a floating-point type (of the desired type, float 1.F, double 1., or long double 1.L),
- // or static_casted integer, for example: static_cast<float>(1) or static_cast<cpp_dec_float_50>(1).
- // Want to allow fixed_point types too, so do not just test for floating-point.
- // Integral types should be promoted to double by user Lambert w functions.
- // If integral type provided to user function lambert_w0 or lambert_wm1,
- // then should already have been promoted to double.
- BOOST_STATIC_ASSERT_MSG(!boost::is_integral<T>::value,
- "Must be floating-point or fixed type (not integer type), for example: lambert_wm1(1.), not lambert_wm1(1)!");
- BOOST_MATH_STD_USING // Aid argument dependent lookup (ADL) of abs.
- const char* function = "boost::math::lambert_wm1<RealType>(<RealType>)"; // Used for error messages.
- // Check for edge and corner cases first:
- if ((boost::math::isnan)(z))
- {
- return policies::raise_domain_error(function,
- "Argument z is NaN!",
- z, pol);
- } // isnan
- if ((boost::math::isinf)(z))
- {
- return policies::raise_domain_error(function,
- "Argument z is infinite!",
- z, pol);
- } // isinf
- if (z == static_cast<T>(0))
- { // z is exactly zero so return -std::numeric_limits<T>::infinity();
- if (std::numeric_limits<T>::has_infinity)
- {
- return -std::numeric_limits<T>::infinity();
- }
- else
- {
- return -tools::max_value<T>();
- }
- }
- if (std::numeric_limits<T>::has_denorm)
- { // All real types except arbitrary precision.
- if (!(boost::math::isnormal)(z))
- { // Almost zero - might also just return infinity like z == 0 or max_value?
- return policies::raise_overflow_error(function,
- "Argument z = %1% is denormalized! (must be z > (std::numeric_limits<RealType>::min)() or z == 0)",
- z, pol);
- }
- }
- if (z > static_cast<T>(0))
- { //
- return policies::raise_domain_error(function,
- "Argument z = %1% is out of range (z <= 0) for Lambert W-1 branch! (Try Lambert W0 branch?)",
- z, pol);
- }
- if (z > -boost::math::tools::min_value<T>())
- { // z is denormalized, so cannot be computed.
- // -std::numeric_limits<T>::min() is smallest for type T,
- // for example, for double: lambert_wm1(-2.2250738585072014e-308) = -714.96865723796634
- return policies::raise_overflow_error(function,
- "Argument z = %1% is too small (z < -std::numeric_limits<T>::min so denormalized) for Lambert W-1 branch!",
- z, pol);
- }
- if (z == -boost::math::constants::exp_minus_one<T>()) // == singularity/branch point z = -exp(-1) = -3.6787944.
- { // At singularity, so return exactly -1.
- return -static_cast<T>(1);
- }
- // z is too negative for the W-1 (or W0) branch.
- if (z < -boost::math::constants::exp_minus_one<T>()) // > singularity/branch point z = -exp(-1) = -3.6787944.
- {
- return policies::raise_domain_error(function,
- "Argument z = %1% is out of range (z < -exp(-1) = -3.6787944... <= 0) for Lambert W-1 (or W0) branch!",
- z, pol);
- }
- if (z < static_cast<T>(-0.35))
- { // Close to singularity/branch point z = -0.3678794411714423215955237701614608727 but on W-1 branch.
- const T p2 = 2 * (boost::math::constants::e<T>() * z + 1);
- if (p2 == 0)
- { // At the singularity at branch point.
- return -1;
- }
- if (p2 > 0)
- {
- T w_series = lambert_w_singularity_series(T(-sqrt(p2)));
- if (boost::math::tools::digits<T>() > 53)
- { // Multiprecision, so try a Halley refinement.
- w_series = lambert_w_detail::lambert_w_halley_iterate(w_series, z);
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_WM1_NOT_BUILTIN
- std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- std::cout << "Lambert W-1 Halley updated to " << w_series << std::endl;
- std::cout.precision(saved_precision);
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_WM1_NOT_BUILTIN
- }
- return w_series;
- }
- // Should not get here.
- return policies::raise_domain_error(function,
- "Argument z = %1% is out of range for Lambert W-1 branch. (Should not get here - please report!)",
- z, pol);
- } // if (z < -0.35)
- using lambert_w_lookup::wm1es;
- using lambert_w_lookup::wm1zs;
- using lambert_w_lookup::noof_wm1zs; // size == 64
- // std::cout <<" Wm1zs[63] (== G[64]) = " << " " << wm1zs[63] << std::endl; // Wm1zs[63] (== G[64]) = -1.0264389699511283e-26
- // Check that z argument value is not smaller than lookup_table G[64]
- // std::cout << "(z > wm1zs[63]) = " << std::boolalpha << (z > wm1zs[63]) << std::endl;
- if (z >= wm1zs[63]) // wm1zs[63] = -1.0264389699511282259046957018510946438e-26L W = 64.00000000000000000
- { // z >= -1.0264389699511303e-26 (but z != 0 and z >= std::numeric_limits<T>::min() and so NOT denormalized).
- // Some info on Lambert W-1 values for extreme values of z.
- // std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- // std::cout << "-std::numeric_limits<float>::min() = " << -(std::numeric_limits<float>::min)() << std::endl;
- // std::cout << "-std::numeric_limits<double>::min() = " << -(std::numeric_limits<double>::min)() << std::endl;
- // -std::numeric_limits<float>::min() = -1.1754943508222875e-38
- // -std::numeric_limits<double>::min() = -2.2250738585072014e-308
- // N[productlog(-1, -1.1754943508222875 * 10^-38 ), 50] = -91.856775324595479509567756730093823993834155027858
- // N[productlog(-1, -2.2250738585072014e-308 * 10^-308 ), 50] = -1424.8544521230553853558132180518404363617968042942
- // N[productlog(-1, -1.4325445274604020119111357113179868158* 10^-27), 37] = -65.99999999999999999999999999999999955
- // R.M.Corless, G.H.Gonnet, D.E.G.Hare, D.J.Jeffrey, and D.E.Knuth,
- // On the Lambert W function, Adv.Comput.Math., vol. 5, pp. 329, 1996.
- // Francois Chapeau-Blondeau and Abdelilah Monir
- // Numerical Evaluation of the Lambert W Function
- // IEEE Transactions On Signal Processing, VOL. 50, NO. 9, Sep 2002
- // https://pdfs.semanticscholar.org/7a5a/76a9369586dd0dd34dda156d8f2779d1fd59.pdf
- // Estimate Lambert W using ln(-z) ...
- // This is roughly the power of ten * ln(10) ~= 2.3. n ~= 10^n
- // and improve by adding a second term -ln(ln(-z))
- T guess; // bisect lowest possible Gk[=64] (for lookup_t type)
- T lz = log(-z);
- T llz = log(-lz);
- guess = lz - llz + (llz / lz); // Chapeau-Blondeau equation 20, page 2162.
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_WM1_TINY
- std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- std::cout << "z = " << z << ", guess = " << guess << ", ln(-z) = " << lz << ", ln(-ln(-z) = " << llz << ", llz/lz = " << (llz / lz) << std::endl;
- // z = -1.0000000000000001e-30, guess = -73.312782616731482, ln(-z) = -69.077552789821368, ln(-ln(-z) = 4.2352298269101114, llz/lz = -0.061311231447304194
- // z = -9.9999999999999999e-91, guess = -212.56650048504233, ln(-z) = -207.23265836946410, ln(-ln(-z) = 5.3338421155782205, llz/lz = -0.025738424423764311
- // >z = -2.2250738585072014e-308, guess = -714.95942238244606, ln(-z) = -708.39641853226408, ln(-ln(-z) = 6.5630038501819854, llz/lz = -0.0092645920821846622
- int d10 = policies::digits_base10<T, Policy>(); // policy template parameter digits10
- int d2 = policies::digits<T, Policy>(); // digits base 2 from policy.
- std::cout << "digits10 = " << d10 << ", digits2 = " << d2 // For example: digits10 = 1, digits2 = 5
- << std::endl;
- std::cout.precision(saved_precision);
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_WM1_TINY
- if (policies::digits<T, Policy>() < 12)
- { // For the worst case near w = 64, the error in the 'guess' is ~0.008, ratio ~ 0.0001 or 1 in 10,000 digits 10 ~= 4, or digits2 ~= 12.
- return guess;
- }
- T result = lambert_w_detail::lambert_w_halley_iterate(guess, z);
- return result;
- // Was Fukushima
- // G[k=64] == g[63] == -1.02643897e-26
- //return policies::raise_domain_error(function,
- // "Argument z = %1% is too small (< -1.02643897e-26) ! (Should not occur, please report.",
- // z, pol);
- } // Z too small so use approximation and Halley.
- // Else Use a lookup table to find the nearest integer part of Lambert W-1 as starting point for Bisection.
- if (boost::math::tools::digits<T>() > 53)
- { // T is more precise than 64-bit double (or long double, or ?),
- // so compute an approximate value using only one Schroeder refinement,
- // (avoiding any double-precision Halley refinement from policy double_digits2<50> 53 - 3 = 50
- // because are next going to use Halley refinement at full/high precision using this as an approximation).
- using boost::math::policies::precision;
- using boost::math::policies::digits10;
- using boost::math::policies::digits2;
- using boost::math::policies::policy;
- // Compute a 50-bit precision approximate W0 in a double (no Halley refinement).
- T double_approx(static_cast<T>(lambert_wm1_imp(must_reduce_to_double(z, std::is_constructible<double, T>()), policy<digits2<50>>())));
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_WM1_NOT_BUILTIN
- std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- std::cout << "Lambert_wm1 Argument Type " << typeid(T).name() << " approximation double = " << double_approx << std::endl;
- std::cout.precision(saved_precision);
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_WM1
- // Perform additional Halley refinement(s) to ensure that
- // get a near as possible to correct result (usually +/- one epsilon).
- T result = lambert_w_halley_iterate(double_approx, z);
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_WM1
- std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- std::cout << "Result " << typeid(T).name() << " precision Halley refinement = " << result << std::endl;
- std::cout.precision(saved_precision);
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_WM1
- return result;
- } // digits > 53 - higher precision than double.
- else // T is double or less precision.
- { // Use a lookup table to find the nearest integer part of Lambert W as starting point for Bisection.
- using namespace boost::math::lambert_w_detail::lambert_w_lookup;
- // Bracketing sequence n = (2, 4, 8, 16, 32, 64) for W-1 branch. (0 is -infinity)
- // Since z is probably quite small, start with lowest n (=2).
- int n = 2;
- if (wm1zs[n - 1] > z)
- {
- goto bisect;
- }
- for (int j = 1; j <= 5; ++j)
- {
- n *= 2;
- if (wm1zs[n - 1] > z)
- {
- goto overshot;
- }
- }
- // else z < g[63] == -1.0264389699511303e-26, so Lambert W-1 integer part > 64.
- // This should not now occur (should be caught by test and code above) so should be a logic_error?
- return policies::raise_domain_error(function,
- "Argument z = %1% is too small (< -1.026439e-26) (logic error - please report!)",
- z, pol);
- overshot:
- {
- int nh = n / 2;
- for (int j = 1; j <= 5; ++j)
- {
- nh /= 2; // halve step size.
- if (nh <= 0)
- {
- break; // goto bisect;
- }
- if (wm1zs[n - nh - 1] > z)
- {
- n -= nh;
- }
- }
- }
- bisect:
- --n;
- // g[n] now holds lambert W of floor integer n and g[n+1] the ceil part;
- // these are used as initial values for bisection.
- #ifdef BOOST_MATH_INSTRUMENT_LAMBERT_WM1_LOOKUP
- std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- std::cout << "Result lookup W-1(" << z << ") bisection between wm1zs[" << n - 1 << "] = " << wm1zs[n - 1] << " and wm1zs[" << n << "] = " << wm1zs[n]
- << ", bisect mean = " << (wm1zs[n - 1] + wm1zs[n]) / 2 << std::endl;
- std::cout.precision(saved_precision);
- #endif // BOOST_MATH_INSTRUMENT_LAMBERT_WM1_LOOKUP
- // Compute bisections is the number of bisections computed from n,
- // such that a single application of the fifth-order Schroeder update formula
- // after the bisections is enough to evaluate Lambert W-1 with (near?) 53-bit accuracy.
- // Fukushima established these by trial and error?
- int bisections = 11; // Assume maximum number of bisections will be needed (most common case).
- if (n >= 8)
- {
- bisections = 8;
- }
- else if (n >= 3)
- {
- bisections = 9;
- }
- else if (n >= 2)
- {
- bisections = 10;
- }
- // Bracketing, Fukushima section 2.3, page 82:
- // (Avoiding using exponential function for speed).
- // Only use @c lookup_t precision, default double, for bisection (again for speed),
- // and use later Halley refinement for higher precisions.
- using lambert_w_lookup::halves;
- using lambert_w_lookup::sqrtwm1s;
- using calc_type = typename std::conditional<std::is_constructible<lookup_t, T>::value, lookup_t, T>::type;
- calc_type w = -static_cast<calc_type>(n); // Equation 25,
- calc_type y = static_cast<calc_type>(z * wm1es[n - 1]); // Equation 26,
- // Perform the bisections fractional bisections for necessary precision.
- for (int j = 0; j < bisections; ++j)
- { // Equation 27.
- calc_type wj = w - halves[j]; // Subtract 1/2, 1/4, 1/8 ...
- calc_type yj = y * sqrtwm1s[j]; // Multiply by sqrt(1/e), ...
- if (wj < yj)
- {
- w = wj;
- y = yj;
- }
- } // for j
- return static_cast<T>(schroeder_update(w, y)); // Schroeder 5th order method refinement.
- // else // Perform additional Halley refinement(s) to ensure that
- // // get a near as possible to correct result (usually +/- epsilon).
- // {
- // // result = lambert_w_halley_iterate(result, z);
- // result = lambert_w_halley_step(result, z); // Just one Halley step should be enough.
- //#ifdef BOOST_MATH_INSTRUMENT_LAMBERT_WM1_HALLEY
- // std::streamsize saved_precision = std::cout.precision(std::numeric_limits<T>::max_digits10);
- // std::cout << "Halley refinement estimate = " << result << std::endl;
- // std::cout.precision(saved_precision);
- //#endif // BOOST_MATH_INSTRUMENT_LAMBERT_W1_HALLEY
- // return result; // Halley
- // } // Schroeder or Schroeder and Halley.
- }
- } // template<typename T = double> T lambert_wm1_imp(const T z)
- } // namespace lambert_w_detail
- ///////////////////////////// User Lambert w functions. //////////////////////////////
- //! Lambert W0 using User-defined policy.
- template <typename T, typename Policy>
- inline
- typename boost::math::tools::promote_args<T>::type
- lambert_w0(T z, const Policy& pol)
- {
- // Promote integer or expression template arguments to double,
- // without doing any other internal promotion like float to double.
- using result_type = typename tools::promote_args<T>::type;
- // Work out what precision has been selected,
- // based on the Policy and the number type.
- using precision_type = typename policies::precision<result_type, Policy>::type;
- // and then select the correct implementation based on that precision (not the type T):
- using tag_type = std::integral_constant<int,
- (precision_type::value == 0) || (precision_type::value > 53) ?
- 0 // either variable precision (0), or greater than 64-bit precision.
- : (precision_type::value <= 24) ? 1 // 32-bit (probably float) precision.
- : 2 // 64-bit (probably double) precision.
- >;
- return lambert_w_detail::lambert_w0_imp(result_type(z), pol, tag_type()); //
- } // lambert_w0(T z, const Policy& pol)
- //! Lambert W0 using default policy.
- template <typename T>
- inline
- typename tools::promote_args<T>::type
- lambert_w0(T z)
- {
- // Promote integer or expression template arguments to double,
- // without doing any other internal promotion like float to double.
- using result_type = typename tools::promote_args<T>::type;
- // Work out what precision has been selected, based on the Policy and the number type.
- // For the default policy version, we want the *default policy* precision for T.
- using precision_type = typename policies::precision<result_type, policies::policy<>>::type;
- // and then select the correct implementation based on that (not the type T):
- using tag_type = std::integral_constant<int,
- (precision_type::value == 0) || (precision_type::value > 53) ?
- 0 // either variable precision (0), or greater than 64-bit precision.
- : (precision_type::value <= 24) ? 1 // 32-bit (probably float) precision.
- : 2 // 64-bit (probably double) precision.
- >;
- return lambert_w_detail::lambert_w0_imp(result_type(z), policies::policy<>(), tag_type());
- } // lambert_w0(T z) using default policy.
- //! W-1 branch (-max(z) < z <= -1/e).
- //! Lambert W-1 using User-defined policy.
- template <typename T, typename Policy>
- inline
- typename tools::promote_args<T>::type
- lambert_wm1(T z, const Policy& pol)
- {
- // Promote integer or expression template arguments to double,
- // without doing any other internal promotion like float to double.
- using result_type = typename tools::promote_args<T>::type;
- return lambert_w_detail::lambert_wm1_imp(result_type(z), pol); //
- }
- //! Lambert W-1 using default policy.
- template <typename T>
- inline
- typename tools::promote_args<T>::type
- lambert_wm1(T z)
- {
- using result_type = typename tools::promote_args<T>::type;
- return lambert_w_detail::lambert_wm1_imp(result_type(z), policies::policy<>());
- } // lambert_wm1(T z)
- // First derivative of Lambert W0 and W-1.
- template <typename T, typename Policy>
- inline typename tools::promote_args<T>::type
- lambert_w0_prime(T z, const Policy& pol)
- {
- using result_type = typename tools::promote_args<T>::type;
- using std::numeric_limits;
- if (z == 0)
- {
- return static_cast<result_type>(1);
- }
- // This is the sensible choice if we regard the Lambert-W function as complex analytic.
- // Of course on the real line, it's just undefined.
- if (z == - boost::math::constants::exp_minus_one<result_type>())
- {
- return numeric_limits<result_type>::has_infinity ? numeric_limits<result_type>::infinity() : boost::math::tools::max_value<result_type>();
- }
- // if z < -1/e, we'll let lambert_w0 do the error handling:
- result_type w = lambert_w0(result_type(z), pol);
- // If w ~ -1, then presumably this can get inaccurate.
- // Is there an accurate way to evaluate 1 + W(-1/e + eps)?
- // Yes: This is discussed in the Princeton Companion to Applied Mathematics,
- // 'The Lambert-W function', Section 1.3: Series and Generating Functions.
- // 1 + W(-1/e + x) ~ sqrt(2ex).
- // Nick is not convinced this formula is more accurate than the naive one.
- // However, for z != -1/e, we never get rounded to w = -1 in any precision I've tested (up to cpp_bin_float_100).
- return w / (z * (1 + w));
- } // lambert_w0_prime(T z)
- template <typename T>
- inline typename tools::promote_args<T>::type
- lambert_w0_prime(T z)
- {
- return lambert_w0_prime(z, policies::policy<>());
- }
-
- template <typename T, typename Policy>
- inline typename tools::promote_args<T>::type
- lambert_wm1_prime(T z, const Policy& pol)
- {
- using std::numeric_limits;
- using result_type = typename tools::promote_args<T>::type;
- //if (z == 0)
- //{
- // return static_cast<result_type>(1);
- //}
- //if (z == - boost::math::constants::exp_minus_one<result_type>())
- if (z == 0 || z == - boost::math::constants::exp_minus_one<result_type>())
- {
- return numeric_limits<result_type>::has_infinity ? -numeric_limits<result_type>::infinity() : -boost::math::tools::max_value<result_type>();
- }
- result_type w = lambert_wm1(z, pol);
- return w/(z*(1+w));
- } // lambert_wm1_prime(T z)
- template <typename T>
- inline typename tools::promote_args<T>::type
- lambert_wm1_prime(T z)
- {
- return lambert_wm1_prime(z, policies::policy<>());
- }
- }} //boost::math namespaces
- #endif // #ifdef BOOST_MATH_SF_LAMBERT_W_HPP
|