123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // History:
- // XZ wrote the original of this file as part of the Google
- // Summer of Code 2006. JM modified it slightly to fit into the
- // Boost.Math conceptual framework better.
- // Updated 2015 to use Carlson's latest methods.
- #ifndef BOOST_MATH_ELLINT_RD_HPP
- #define BOOST_MATH_ELLINT_RD_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/ellint_rc.hpp>
- #include <boost/math/special_functions/pow.hpp>
- #include <boost/math/tools/config.hpp>
- #include <boost/math/policies/error_handling.hpp>
- // Carlson's elliptic integral of the second kind
- // R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt
- // Carlson, Numerische Mathematik, vol 33, 1 (1979)
- namespace boost { namespace math { namespace detail{
- template <typename T, typename Policy>
- T ellint_rd_imp(T x, T y, T z, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using std::swap;
- static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)";
- if(x < 0)
- {
- return policies::raise_domain_error<T>(function,
- "Argument x must be >= 0, but got %1%", x, pol);
- }
- if(y < 0)
- {
- return policies::raise_domain_error<T>(function,
- "Argument y must be >= 0, but got %1%", y, pol);
- }
- if(z <= 0)
- {
- return policies::raise_domain_error<T>(function,
- "Argument z must be > 0, but got %1%", z, pol);
- }
- if(x + y == 0)
- {
- return policies::raise_domain_error<T>(function,
- "At most one argument can be zero, but got, x + y = %1%", x + y, pol);
- }
- //
- // Special cases from http://dlmf.nist.gov/19.20#iv
- //
- using std::swap;
- if(x == z)
- swap(x, y);
- if(y == z)
- {
- if(x == y)
- {
- return 1 / (x * sqrt(x));
- }
- else if(x == 0)
- {
- return 3 * constants::pi<T>() / (4 * y * sqrt(y));
- }
- else
- {
- if((std::min)(x, y) / (std::max)(x, y) > 1.3)
- return 3 * (ellint_rc_imp(x, y, pol) - sqrt(x) / y) / (2 * (y - x));
- // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
- }
- }
- if(x == y)
- {
- if((std::min)(x, z) / (std::max)(x, z) > 1.3)
- return 3 * (ellint_rc_imp(z, x, pol) - 1 / sqrt(z)) / (z - x);
- // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
- }
- if(y == 0)
- swap(x, y);
- if(x == 0)
- {
- //
- // Special handling for common case, from
- // Numerical Computation of Real or Complex Elliptic Integrals, eq.47
- //
- T xn = sqrt(y);
- T yn = sqrt(z);
- T x0 = xn;
- T y0 = yn;
- T sum = 0;
- T sum_pow = 0.25f;
- while(fabs(xn - yn) >= 2.7 * tools::root_epsilon<T>() * fabs(xn))
- {
- T t = sqrt(xn * yn);
- xn = (xn + yn) / 2;
- yn = t;
- sum_pow *= 2;
- sum += sum_pow * boost::math::pow<2>(xn - yn);
- }
- T RF = constants::pi<T>() / (xn + yn);
- //
- // This following calculation suffers from serious cancellation when y ~ z
- // unless we combine terms. We have:
- //
- // ( ((x0 + y0)/2)^2 - z ) / (z(y-z))
- //
- // Substituting y = x0^2 and z = y0^2 and simplifying we get the following:
- //
- T pt = (x0 + 3 * y0) / (4 * z * (x0 + y0));
- //
- // Since we've moved the denominator from eq.47 inside the expression, we
- // need to also scale "sum" by the same value:
- //
- pt -= sum / (z * (y - z));
- return pt * RF * 3;
- }
- T xn = x;
- T yn = y;
- T zn = z;
- T An = (x + y + 3 * z) / 5;
- T A0 = An;
- // This has an extra 1.2 fudge factor which is really only needed when x, y and z are close in magnitude:
- T Q = pow(tools::epsilon<T>() / 4, -T(1) / 8) * (std::max)((std::max)(An - x, An - y), An - z) * 1.2f;
- BOOST_MATH_INSTRUMENT_VARIABLE(Q);
- T lambda, rx, ry, rz;
- unsigned k = 0;
- T fn = 1;
- T RD_sum = 0;
- for(; k < policies::get_max_series_iterations<Policy>(); ++k)
- {
- rx = sqrt(xn);
- ry = sqrt(yn);
- rz = sqrt(zn);
- lambda = rx * ry + rx * rz + ry * rz;
- RD_sum += fn / (rz * (zn + lambda));
- An = (An + lambda) / 4;
- xn = (xn + lambda) / 4;
- yn = (yn + lambda) / 4;
- zn = (zn + lambda) / 4;
- fn /= 4;
- Q /= 4;
- BOOST_MATH_INSTRUMENT_VARIABLE(k);
- BOOST_MATH_INSTRUMENT_VARIABLE(RD_sum);
- BOOST_MATH_INSTRUMENT_VARIABLE(Q);
- if(Q < An)
- break;
- }
- policies::check_series_iterations<T, Policy>(function, k, pol);
- T X = fn * (A0 - x) / An;
- T Y = fn * (A0 - y) / An;
- T Z = -(X + Y) / 3;
- T E2 = X * Y - 6 * Z * Z;
- T E3 = (3 * X * Y - 8 * Z * Z) * Z;
- T E4 = 3 * (X * Y - Z * Z) * Z * Z;
- T E5 = X * Y * Z * Z * Z;
- T result = fn * pow(An, T(-3) / 2) *
- (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
- + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- result += 3 * RD_sum;
- return result;
- }
- } // namespace detail
- template <class T1, class T2, class T3, class Policy>
- inline typename tools::promote_args<T1, T2, T3>::type
- ellint_rd(T1 x, T2 y, T3 z, const Policy& pol)
- {
- typedef typename tools::promote_args<T1, T2, T3>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(
- detail::ellint_rd_imp(
- static_cast<value_type>(x),
- static_cast<value_type>(y),
- static_cast<value_type>(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)");
- }
- template <class T1, class T2, class T3>
- inline typename tools::promote_args<T1, T2, T3>::type
- ellint_rd(T1 x, T2 y, T3 z)
- {
- return ellint_rd(x, y, z, policies::policy<>());
- }
- }} // namespaces
- #endif // BOOST_MATH_ELLINT_RD_HPP
|