polygamma.hpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // Copyright 2013 Nikhar Agrawal
  3. // Copyright 2013 Christopher Kormanyos
  4. // Copyright 2014 John Maddock
  5. // Copyright 2013 Paul Bristow
  6. // Distributed under the Boost
  7. // Software License, Version 1.0. (See accompanying file
  8. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  9. #ifndef _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
  10. #define _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
  11. #include <cmath>
  12. #include <limits>
  13. #include <boost/cstdint.hpp>
  14. #include <boost/math/policies/policy.hpp>
  15. #include <boost/math/special_functions/bernoulli.hpp>
  16. #include <boost/math/special_functions/trunc.hpp>
  17. #include <boost/math/special_functions/zeta.hpp>
  18. #include <boost/math/special_functions/digamma.hpp>
  19. #include <boost/math/special_functions/sin_pi.hpp>
  20. #include <boost/math/special_functions/cos_pi.hpp>
  21. #include <boost/math/special_functions/pow.hpp>
  22. #include <boost/static_assert.hpp>
  23. #include <boost/type_traits/is_convertible.hpp>
  24. #ifdef _MSC_VER
  25. #pragma once
  26. #pragma warning(push)
  27. #pragma warning(disable:4702) // Unreachable code (release mode only warning)
  28. #endif
  29. namespace boost { namespace math { namespace detail{
  30. template<class T, class Policy>
  31. T polygamma_atinfinityplus(const int n, const T& x, const Policy& pol, const char* function) // for large values of x such as for x> 400
  32. {
  33. // See http://functions.wolfram.com/GammaBetaErf/PolyGamma2/06/02/0001/
  34. BOOST_MATH_STD_USING
  35. //
  36. // sum == current value of accumulated sum.
  37. // term == value of current term to be added to sum.
  38. // part_term == value of current term excluding the Bernoulli number part
  39. //
  40. if(n + x == x)
  41. {
  42. // x is crazy large, just concentrate on the first part of the expression and use logs:
  43. if(n == 1) return 1 / x;
  44. T nlx = n * log(x);
  45. if((nlx < tools::log_max_value<T>()) && (n < (int)max_factorial<T>::value))
  46. return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1, pol) * pow(x, -n);
  47. else
  48. return ((n & 1) ? 1 : -1) * exp(boost::math::lgamma(T(n), pol) - n * log(x));
  49. }
  50. T term, sum, part_term;
  51. T x_squared = x * x;
  52. //
  53. // Start by setting part_term to:
  54. //
  55. // (n-1)! / x^(n+1)
  56. //
  57. // which is common to both the first term of the series (with k = 1)
  58. // and to the leading part.
  59. // We can then get to the leading term by:
  60. //
  61. // part_term * (n + 2 * x) / 2
  62. //
  63. // and to the first term in the series
  64. // (excluding the Bernoulli number) by:
  65. //
  66. // part_term n * (n + 1) / (2x)
  67. //
  68. // If either the factorial would overflow,
  69. // or the power term underflows, this just gets set to 0 and then we
  70. // know that we have to use logs for the initial terms:
  71. //
  72. part_term = ((n > (int)boost::math::max_factorial<T>::value) && (T(n) * n > tools::log_max_value<T>()))
  73. ? T(0) : static_cast<T>(boost::math::factorial<T>(n - 1, pol) * pow(x, -n - 1));
  74. if(part_term == 0)
  75. {
  76. // Either n is very large, or the power term underflows,
  77. // set the initial values of part_term, term and sum via logs:
  78. part_term = static_cast<T>(boost::math::lgamma(n, pol) - (n + 1) * log(x));
  79. sum = exp(part_term + log(n + 2 * x) - boost::math::constants::ln_two<T>());
  80. part_term += log(T(n) * (n + 1)) - boost::math::constants::ln_two<T>() - log(x);
  81. part_term = exp(part_term);
  82. }
  83. else
  84. {
  85. sum = part_term * (n + 2 * x) / 2;
  86. part_term *= (T(n) * (n + 1)) / 2;
  87. part_term /= x;
  88. }
  89. //
  90. // If the leading term is 0, so is the result:
  91. //
  92. if(sum == 0)
  93. return sum;
  94. for(unsigned k = 1;;)
  95. {
  96. term = part_term * boost::math::bernoulli_b2n<T>(k, pol);
  97. sum += term;
  98. //
  99. // Normal termination condition:
  100. //
  101. if(fabs(term / sum) < tools::epsilon<T>())
  102. break;
  103. //
  104. // Increment our counter, and move part_term on to the next value:
  105. //
  106. ++k;
  107. part_term *= T(n + 2 * k - 2) * (n - 1 + 2 * k);
  108. part_term /= (2 * k - 1) * 2 * k;
  109. part_term /= x_squared;
  110. //
  111. // Emergency get out termination condition:
  112. //
  113. if(k > policies::get_max_series_iterations<Policy>())
  114. {
  115. return policies::raise_evaluation_error(function, "Series did not converge, closest value was %1%", sum, pol);
  116. }
  117. }
  118. if((n - 1) & 1)
  119. sum = -sum;
  120. return sum;
  121. }
  122. template<class T, class Policy>
  123. T polygamma_attransitionplus(const int n, const T& x, const Policy& pol, const char* function)
  124. {
  125. // See: http://functions.wolfram.com/GammaBetaErf/PolyGamma2/16/01/01/0017/
  126. // Use N = (0.4 * digits) + (4 * n) for target value for x:
  127. BOOST_MATH_STD_USING
  128. const int d4d = static_cast<int>(0.4F * policies::digits_base10<T, Policy>());
  129. const int N = d4d + (4 * n);
  130. const int m = n;
  131. const int iter = N - itrunc(x);
  132. if(iter > (int)policies::get_max_series_iterations<Policy>())
  133. return policies::raise_evaluation_error<T>(function, ("Exceeded maximum series evaluations evaluating at n = " + boost::lexical_cast<std::string>(n) + " and x = %1%").c_str(), x, pol);
  134. const int minus_m_minus_one = -m - 1;
  135. T z(x);
  136. T sum0(0);
  137. T z_plus_k_pow_minus_m_minus_one(0);
  138. // Forward recursion to larger x, need to check for overflow first though:
  139. if(log(z + iter) * minus_m_minus_one > -tools::log_max_value<T>())
  140. {
  141. for(int k = 1; k <= iter; ++k)
  142. {
  143. z_plus_k_pow_minus_m_minus_one = pow(z, minus_m_minus_one);
  144. sum0 += z_plus_k_pow_minus_m_minus_one;
  145. z += 1;
  146. }
  147. sum0 *= boost::math::factorial<T>(n, pol);
  148. }
  149. else
  150. {
  151. for(int k = 1; k <= iter; ++k)
  152. {
  153. T log_term = log(z) * minus_m_minus_one + boost::math::lgamma(T(n + 1), pol);
  154. sum0 += exp(log_term);
  155. z += 1;
  156. }
  157. }
  158. if((n - 1) & 1)
  159. sum0 = -sum0;
  160. return sum0 + polygamma_atinfinityplus(n, z, pol, function);
  161. }
  162. template <class T, class Policy>
  163. T polygamma_nearzero(int n, T x, const Policy& pol, const char* function)
  164. {
  165. BOOST_MATH_STD_USING
  166. //
  167. // If we take this expansion for polygamma: http://functions.wolfram.com/06.15.06.0003.02
  168. // and substitute in this expression for polygamma(n, 1): http://functions.wolfram.com/06.15.03.0009.01
  169. // we get an alternating series for polygamma when x is small in terms of zeta functions of
  170. // integer arguments (which are easy to evaluate, at least when the integer is even).
  171. //
  172. // In order to avoid spurious overflow, save the n! term for later, and rescale at the end:
  173. //
  174. T scale = boost::math::factorial<T>(n, pol);
  175. //
  176. // "factorial_part" contains everything except the zeta function
  177. // evaluations in each term:
  178. //
  179. T factorial_part = 1;
  180. //
  181. // "prefix" is what we'll be adding the accumulated sum to, it will
  182. // be n! / z^(n+1), but since we're scaling by n! it's just
  183. // 1 / z^(n+1) for now:
  184. //
  185. T prefix = pow(x, n + 1);
  186. if(prefix == 0)
  187. return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
  188. prefix = 1 / prefix;
  189. //
  190. // First term in the series is necessarily < zeta(2) < 2, so
  191. // ignore the sum if it will have no effect on the result anyway:
  192. //
  193. if(prefix > 2 / policies::get_epsilon<T, Policy>())
  194. return ((n & 1) ? 1 : -1) *
  195. (tools::max_value<T>() / prefix < scale ? policies::raise_overflow_error<T>(function, 0, pol) : prefix * scale);
  196. //
  197. // As this is an alternating series we could accelerate it using
  198. // "Convergence Acceleration of Alternating Series",
  199. // Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Experimental Mathematics, 1999.
  200. // In practice however, it appears not to make any difference to the number of terms
  201. // required except in some edge cases which are filtered out anyway before we get here.
  202. //
  203. T sum = prefix;
  204. for(unsigned k = 0;;)
  205. {
  206. // Get the k'th term:
  207. T term = factorial_part * boost::math::zeta(T(k + n + 1), pol);
  208. sum += term;
  209. // Termination condition:
  210. if(fabs(term) < fabs(sum * boost::math::policies::get_epsilon<T, Policy>()))
  211. break;
  212. //
  213. // Move on k and factorial_part:
  214. //
  215. ++k;
  216. factorial_part *= (-x * (n + k)) / k;
  217. //
  218. // Last chance exit:
  219. //
  220. if(k > policies::get_max_series_iterations<Policy>())
  221. return policies::raise_evaluation_error<T>(function, "Series did not converge, best value is %1%", sum, pol);
  222. }
  223. //
  224. // We need to multiply by the scale, at each stage checking for overflow:
  225. //
  226. if(boost::math::tools::max_value<T>() / scale < sum)
  227. return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
  228. sum *= scale;
  229. return n & 1 ? sum : T(-sum);
  230. }
  231. //
  232. // Helper function which figures out which slot our coefficient is in
  233. // given an angle multiplier for the cosine term of power:
  234. //
  235. template <class Table>
  236. typename Table::value_type::reference dereference_table(Table& table, unsigned row, unsigned power)
  237. {
  238. return table[row][power / 2];
  239. }
  240. template <class T, class Policy>
  241. T poly_cot_pi(int n, T x, T xc, const Policy& pol, const char* function)
  242. {
  243. BOOST_MATH_STD_USING
  244. // Return n'th derivative of cot(pi*x) at x, these are simply
  245. // tabulated for up to n = 9, beyond that it is possible to
  246. // calculate coefficients as follows:
  247. //
  248. // The general form of each derivative is:
  249. //
  250. // pi^n * SUM{k=0, n} C[k,n] * cos^k(pi * x) * csc^(n+1)(pi * x)
  251. //
  252. // With constant C[0,1] = -1 and all other C[k,n] = 0;
  253. // Then for each k < n+1:
  254. // C[k-1, n+1] -= k * C[k, n];
  255. // C[k+1, n+1] += (k-n-1) * C[k, n];
  256. //
  257. // Note that there are many different ways of representing this derivative thanks to
  258. // the many trigonometric identies available. In particular, the sum of powers of
  259. // cosines could be replaced by a sum of cosine multiple angles, and indeed if you
  260. // plug the derivative into Mathematica this is the form it will give. The two
  261. // forms are related via the Chebeshev polynomials of the first kind and
  262. // T_n(cos(x)) = cos(n x). The polynomial form has the great advantage that
  263. // all the cosine terms are zero at half integer arguments - right where this
  264. // function has it's minimum - thus avoiding cancellation error in this region.
  265. //
  266. // And finally, since every other term in the polynomials is zero, we can save
  267. // space by only storing the non-zero terms. This greatly complexifies
  268. // subscripting the tables in the calculation, but halves the storage space
  269. // (and complexity for that matter).
  270. //
  271. T s = fabs(x) < fabs(xc) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(xc, pol);
  272. T c = boost::math::cos_pi(x, pol);
  273. switch(n)
  274. {
  275. case 1:
  276. return -constants::pi<T, Policy>() / (s * s);
  277. case 2:
  278. {
  279. return 2 * constants::pi<T, Policy>() * constants::pi<T, Policy>() * c / boost::math::pow<3>(s, pol);
  280. }
  281. case 3:
  282. {
  283. int P[] = { -2, -4 };
  284. return boost::math::pow<3>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<4>(s, pol);
  285. }
  286. case 4:
  287. {
  288. int P[] = { 16, 8 };
  289. return boost::math::pow<4>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<5>(s, pol);
  290. }
  291. case 5:
  292. {
  293. int P[] = { -16, -88, -16 };
  294. return boost::math::pow<5>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<6>(s, pol);
  295. }
  296. case 6:
  297. {
  298. int P[] = { 272, 416, 32 };
  299. return boost::math::pow<6>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<7>(s, pol);
  300. }
  301. case 7:
  302. {
  303. int P[] = { -272, -2880, -1824, -64 };
  304. return boost::math::pow<7>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<8>(s, pol);
  305. }
  306. case 8:
  307. {
  308. int P[] = { 7936, 24576, 7680, 128 };
  309. return boost::math::pow<8>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<9>(s, pol);
  310. }
  311. case 9:
  312. {
  313. int P[] = { -7936, -137216, -185856, -31616, -256 };
  314. return boost::math::pow<9>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<10>(s, pol);
  315. }
  316. case 10:
  317. {
  318. int P[] = { 353792, 1841152, 1304832, 128512, 512 };
  319. return boost::math::pow<10>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<11>(s, pol);
  320. }
  321. case 11:
  322. {
  323. int P[] = { -353792, -9061376, -21253376, -8728576, -518656, -1024};
  324. return boost::math::pow<11>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<12>(s, pol);
  325. }
  326. case 12:
  327. {
  328. int P[] = { 22368256, 175627264, 222398464, 56520704, 2084864, 2048 };
  329. return boost::math::pow<12>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<13>(s, pol);
  330. }
  331. #ifndef BOOST_NO_LONG_LONG
  332. case 13:
  333. {
  334. long long P[] = { -22368256LL, -795300864LL, -2868264960LL, -2174832640LL, -357888000LL, -8361984LL, -4096 };
  335. return boost::math::pow<13>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<14>(s, pol);
  336. }
  337. case 14:
  338. {
  339. long long P[] = { 1903757312LL, 21016670208LL, 41731645440LL, 20261765120LL, 2230947840LL, 33497088LL, 8192 };
  340. return boost::math::pow<14>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<15>(s, pol);
  341. }
  342. case 15:
  343. {
  344. long long P[] = { -1903757312LL, -89702612992LL, -460858269696LL, -559148810240LL, -182172651520LL, -13754155008LL, -134094848LL, -16384 };
  345. return boost::math::pow<15>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<16>(s, pol);
  346. }
  347. case 16:
  348. {
  349. long long P[] = { 209865342976LL, 3099269660672LL, 8885192097792LL, 7048869314560LL, 1594922762240LL, 84134068224LL, 536608768LL, 32768 };
  350. return boost::math::pow<16>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<17>(s, pol);
  351. }
  352. case 17:
  353. {
  354. long long P[] = { -209865342976LL, -12655654469632LL, -87815735738368LL, -155964390375424LL, -84842998005760LL, -13684856848384LL, -511780323328LL, -2146926592LL, -65536 };
  355. return boost::math::pow<17>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<18>(s, pol);
  356. }
  357. case 18:
  358. {
  359. long long P[] = { 29088885112832LL, 553753414467584LL, 2165206642589696LL, 2550316668551168LL, 985278548541440LL, 115620218667008LL, 3100738912256LL, 8588754944LL, 131072 };
  360. return boost::math::pow<18>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<19>(s, pol);
  361. }
  362. case 19:
  363. {
  364. long long P[] = { -29088885112832LL, -2184860175433728LL, -19686087844429824LL, -48165109676113920LL, -39471306959486976LL, -11124607890751488LL, -965271355195392LL, -18733264797696LL, -34357248000LL, -262144 };
  365. return boost::math::pow<19>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<20>(s, pol);
  366. }
  367. case 20:
  368. {
  369. long long P[] = { 4951498053124096LL, 118071834535526400LL, 603968063567560704LL, 990081991141490688LL, 584901762421358592LL, 122829335169859584LL, 7984436548730880LL, 112949304754176LL, 137433710592LL, 524288 };
  370. return boost::math::pow<20>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<21>(s, pol);
  371. }
  372. #endif
  373. }
  374. //
  375. // We'll have to compute the coefficients up to n,
  376. // complexity is O(n^2) which we don't worry about for now
  377. // as the values are computed once and then cached.
  378. // However, if the final evaluation would have too many
  379. // terms just bail out right away:
  380. //
  381. if((unsigned)n / 2u > policies::get_max_series_iterations<Policy>())
  382. return policies::raise_evaluation_error<T>(function, "The value of n is so large that we're unable to compute the result in reasonable time, best guess is %1%", 0, pol);
  383. #ifdef BOOST_HAS_THREADS
  384. static boost::detail::lightweight_mutex m;
  385. boost::detail::lightweight_mutex::scoped_lock l(m);
  386. #endif
  387. static int digits = tools::digits<T>();
  388. static std::vector<std::vector<T> > table(1, std::vector<T>(1, T(-1)));
  389. int current_digits = tools::digits<T>();
  390. if(digits != current_digits)
  391. {
  392. // Oh my... our precision has changed!
  393. table = std::vector<std::vector<T> >(1, std::vector<T>(1, T(-1)));
  394. digits = current_digits;
  395. }
  396. int index = n - 1;
  397. if(index >= (int)table.size())
  398. {
  399. for(int i = (int)table.size() - 1; i < index; ++i)
  400. {
  401. int offset = i & 1; // 1 if the first cos power is 0, otherwise 0.
  402. int sin_order = i + 2; // order of the sin term
  403. int max_cos_order = sin_order - 1; // largest order of the polynomial of cos terms
  404. int max_columns = (max_cos_order - offset) / 2; // How many entries there are in the current row.
  405. int next_offset = offset ? 0 : 1;
  406. int next_max_columns = (max_cos_order + 1 - next_offset) / 2; // How many entries there will be in the next row
  407. table.push_back(std::vector<T>(next_max_columns + 1, T(0)));
  408. for(int column = 0; column <= max_columns; ++column)
  409. {
  410. int cos_order = 2 * column + offset; // order of the cosine term in entry "column"
  411. BOOST_ASSERT(column < (int)table[i].size());
  412. BOOST_ASSERT((cos_order + 1) / 2 < (int)table[i + 1].size());
  413. table[i + 1][(cos_order + 1) / 2] += ((cos_order - sin_order) * table[i][column]) / (sin_order - 1);
  414. if(cos_order)
  415. table[i + 1][(cos_order - 1) / 2] += (-cos_order * table[i][column]) / (sin_order - 1);
  416. }
  417. }
  418. }
  419. T sum = boost::math::tools::evaluate_even_polynomial(&table[index][0], c, table[index].size());
  420. if(index & 1)
  421. sum *= c; // First coefficient is order 1, and really an odd polynomial.
  422. if(sum == 0)
  423. return sum;
  424. //
  425. // The remaining terms are computed using logs since the powers and factorials
  426. // get real large real quick:
  427. //
  428. T power_terms = n * log(boost::math::constants::pi<T>());
  429. if(s == 0)
  430. return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
  431. power_terms -= log(fabs(s)) * (n + 1);
  432. power_terms += boost::math::lgamma(T(n), pol);
  433. power_terms += log(fabs(sum));
  434. if(power_terms > boost::math::tools::log_max_value<T>())
  435. return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
  436. return exp(power_terms) * ((s < 0) && ((n + 1) & 1) ? -1 : 1) * boost::math::sign(sum);
  437. }
  438. template <class T, class Policy>
  439. struct polygamma_initializer
  440. {
  441. struct init
  442. {
  443. init()
  444. {
  445. // Forces initialization of our table of coefficients and mutex:
  446. boost::math::polygamma(30, T(-2.5f), Policy());
  447. }
  448. void force_instantiate()const{}
  449. };
  450. static const init initializer;
  451. static void force_instantiate()
  452. {
  453. initializer.force_instantiate();
  454. }
  455. };
  456. template <class T, class Policy>
  457. const typename polygamma_initializer<T, Policy>::init polygamma_initializer<T, Policy>::initializer;
  458. template<class T, class Policy>
  459. inline T polygamma_imp(const int n, T x, const Policy &pol)
  460. {
  461. BOOST_MATH_STD_USING
  462. static const char* function = "boost::math::polygamma<%1%>(int, %1%)";
  463. polygamma_initializer<T, Policy>::initializer.force_instantiate();
  464. if(n < 0)
  465. return policies::raise_domain_error<T>(function, "Order must be >= 0, but got %1%", static_cast<T>(n), pol);
  466. if(x < 0)
  467. {
  468. if(floor(x) == x)
  469. {
  470. //
  471. // Result is infinity if x is odd, and a pole error if x is even.
  472. //
  473. if(lltrunc(x) & 1)
  474. return policies::raise_overflow_error<T>(function, 0, pol);
  475. else
  476. return policies::raise_pole_error<T>(function, "Evaluation at negative integer %1%", x, pol);
  477. }
  478. T z = 1 - x;
  479. T result = polygamma_imp(n, z, pol) + constants::pi<T, Policy>() * poly_cot_pi(n, z, x, pol, function);
  480. return n & 1 ? T(-result) : result;
  481. }
  482. //
  483. // Limit for use of small-x-series is chosen
  484. // so that the series doesn't go too divergent
  485. // in the first few terms. Ordinarily this
  486. // would mean setting the limit to ~ 1 / n,
  487. // but we can tolerate a small amount of divergence:
  488. //
  489. T small_x_limit = (std::min)(T(T(5) / n), T(0.25f));
  490. if(x < small_x_limit)
  491. {
  492. return polygamma_nearzero(n, x, pol, function);
  493. }
  494. else if(x > 0.4F * policies::digits_base10<T, Policy>() + 4.0f * n)
  495. {
  496. return polygamma_atinfinityplus(n, x, pol, function);
  497. }
  498. else if(x == 1)
  499. {
  500. return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
  501. }
  502. else if(x == 0.5f)
  503. {
  504. T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
  505. if(fabs(result) >= ldexp(tools::max_value<T>(), -n - 1))
  506. return boost::math::sign(result) * policies::raise_overflow_error<T>(function, 0, pol);
  507. result *= ldexp(T(1), n + 1) - 1;
  508. return result;
  509. }
  510. else
  511. {
  512. return polygamma_attransitionplus(n, x, pol, function);
  513. }
  514. }
  515. } } } // namespace boost::math::detail
  516. #ifdef _MSC_VER
  517. #pragma warning(pop)
  518. #endif
  519. #endif // _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_