123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- /*
- * Copyright Nick Thompson, 2020
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_SPECIAL_DAUBECHIES_WAVELET_HPP
- #define BOOST_MATH_SPECIAL_DAUBECHIES_WAVELET_HPP
- #include <vector>
- #include <array>
- #include <cmath>
- #include <thread>
- #include <future>
- #include <iostream>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/special_functions/detail/daubechies_scaling_integer_grid.hpp>
- #include <boost/math/special_functions/daubechies_scaling.hpp>
- #include <boost/math/filters/daubechies.hpp>
- #include <boost/math/interpolators/detail/cubic_hermite_detail.hpp>
- #include <boost/math/interpolators/detail/quintic_hermite_detail.hpp>
- #include <boost/math/interpolators/detail/septic_hermite_detail.hpp>
- namespace boost::math {
- template<class Real, int p, int order>
- std::vector<Real> daubechies_wavelet_dyadic_grid(int64_t j_max)
- {
- if (j_max == 0)
- {
- throw std::domain_error("The wavelet dyadic grid is refined from the scaling integer grid, so its minimum amount of data is half integer widths.");
- }
- auto phijk = daubechies_scaling_dyadic_grid<Real, p, order>(j_max - 1);
- //psi_j[l] = psi(-p+1 + l/2^j) = \sum_{k=0}^{2p-1} (-1)^k c_k \phi(1-2p+k + l/2^{j-1})
- //For derivatives just map c_k -> 2^order c_k.
- auto d = boost::math::filters::daubechies_scaling_filter<Real, p>();
- Real scale = boost::math::constants::root_two<Real>() * (1 << order);
- for (size_t i = 0; i < d.size(); ++i)
- {
- d[i] *= scale;
- if (!(i & 1))
- {
- d[i] = -d[i];
- }
- }
- std::vector<Real> v(2 * p + (2 * p - 1) * ((int64_t(1) << j_max) - 1), std::numeric_limits<Real>::quiet_NaN());
- v[0] = 0;
- v[v.size() - 1] = 0;
- for (int64_t l = 1; l < static_cast<int64_t>(v.size() - 1); ++l)
- {
- Real term = 0;
- for (int64_t k = 0; k < static_cast<int64_t>(d.size()); ++k)
- {
- int64_t idx = (int64_t(1) << (j_max - 1)) * (1 - 2 * p + k) + l;
- if (idx < 0 || idx >= static_cast<int64_t>(phijk.size()))
- {
- continue;
- }
- term += d[k] * phijk[idx];
- }
- v[l] = term;
- }
- return v;
- }
- template<class Real, int p>
- class daubechies_wavelet {
- //
- // Some type manipulation so we know the type of the interpolator, and the vector type it requires:
- //
- typedef std::vector < std::array < Real, p < 6 ? 2 : p < 10 ? 3 : 4>> vector_type;
- //
- // List our interpolators:
- //
- typedef std::tuple<
- detail::null_interpolator, detail::matched_holder_aos<vector_type>, detail::linear_interpolation_aos<vector_type>,
- interpolators::detail::cardinal_cubic_hermite_detail_aos<vector_type>, interpolators::detail::cardinal_quintic_hermite_detail_aos<vector_type>,
- interpolators::detail::cardinal_septic_hermite_detail_aos<vector_type> > interpolator_list;
- //
- // Select the one we need:
- //
- typedef std::tuple_element_t<
- p == 1 ? 0 :
- p == 2 ? 1 :
- p == 3 ? 2 :
- p <= 5 ? 3 :
- p <= 9 ? 4 : 5, interpolator_list> interpolator_type;
- public:
- daubechies_wavelet(int grid_refinements = -1)
- {
- static_assert(p < 20, "Daubechies wavelets are only implemented for p < 20.");
- static_assert(p > 0, "Daubechies wavelets must have at least 1 vanishing moment.");
- if (grid_refinements == 0)
- {
- throw std::domain_error("The wavelet requires at least 1 grid refinement.");
- }
- if constexpr (p == 1)
- {
- return;
- }
- else
- {
- if (grid_refinements < 0)
- {
- if (std::is_same_v<Real, float>)
- {
- if (grid_refinements == -2)
- {
- // Control absolute error:
- // p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- std::array<int, 20> r{ -1, -1, 18, 19, 16, 11, 8, 7, 7, 7, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3 };
- grid_refinements = r[p];
- }
- else
- {
- // Control relative error:
- // p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- std::array<int, 20> r{ -1, -1, 21, 21, 21, 17, 16, 15, 14, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11 };
- grid_refinements = r[p];
- }
- }
- else if (std::is_same_v<Real, double>)
- {
- // p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- std::array<int, 20> r{ -1, -1, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 19, 18, 18, 18, 18, 18, 18, 18 };
- grid_refinements = r[p];
- }
- else
- {
- grid_refinements = 21;
- }
- }
- // Compute the refined grid:
- // In fact for float precision I know the grid must be computed in double precision and then cast back down, or else parts of the support are systematically inaccurate.
- std::future<std::vector<Real>> t0 = std::async(std::launch::async, [&grid_refinements]() {
- // Computing in higher precision and downcasting is essential for 1ULP evaluation in float precision:
- auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 0>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- // Compute the derivative of the refined grid:
- std::future<std::vector<Real>> t1 = std::async(std::launch::async, [&grid_refinements]() {
- auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 1>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- // if necessary, compute the second and third derivative:
- std::vector<Real> d2ydx2;
- std::vector<Real> d3ydx3;
- if constexpr (p >= 6) {
- std::future<std::vector<Real>> t3 = std::async(std::launch::async, [&grid_refinements]() {
- auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 2>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- if constexpr (p >= 10) {
- std::future<std::vector<Real>> t4 = std::async(std::launch::async, [&grid_refinements]() {
- auto v = daubechies_wavelet_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 3>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- d3ydx3 = t4.get();
- }
- d2ydx2 = t3.get();
- }
- auto y = t0.get();
- auto dydx = t1.get();
- if constexpr (p >= 2)
- {
- vector_type data(y.size());
- for (size_t i = 0; i < y.size(); ++i)
- {
- data[i][0] = y[i];
- data[i][1] = dydx[i];
- if constexpr (p >= 6)
- data[i][2] = d2ydx2[i];
- if constexpr (p >= 10)
- data[i][3] = d3ydx3[i];
- }
- if constexpr (p <= 3)
- m_interpolator = std::make_shared<interpolator_type>(std::move(data), grid_refinements, Real(-p + 1));
- else
- m_interpolator = std::make_shared<interpolator_type>(std::move(data), Real(-p + 1), Real(1) / (1 << grid_refinements));
- }
- else
- m_interpolator = std::make_shared<detail::null_interpolator>();
- }
- }
- inline Real operator()(Real x) const
- {
- if (x <= -p + 1 || x >= p)
- {
- return 0;
- }
- if constexpr (p == 1)
- {
- if (x < Real(1) / Real(2))
- {
- return 1;
- }
- else if (x == Real(1) / Real(2))
- {
- return 0;
- }
- return -1;
- }
- return (*m_interpolator)(x);
- }
- inline Real prime(Real x) const
- {
- static_assert(p > 2, "The 3-vanishing moment Daubechies wavelet is the first which is continuously differentiable.");
- if (x <= -p + 1 || x >= p)
- {
- return 0;
- }
- return m_interpolator->prime(x);
- }
- inline Real double_prime(Real x) const
- {
- static_assert(p >= 6, "Second derivatives of Daubechies wavelets require at least 6 vanishing moments.");
- if (x <= -p + 1 || x >= p)
- {
- return Real(0);
- }
- return m_interpolator->double_prime(x);
- }
- std::pair<Real, Real> support() const
- {
- return { Real(-p + 1), Real(p) };
- }
- int64_t bytes() const
- {
- return m_interpolator->bytes() + sizeof(*this);
- }
- private:
- std::shared_ptr<interpolator_type> m_interpolator;
- };
- }
- #endif
|