123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- /*
- * Copyright Nick Thompson, John Maddock 2020
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_SPECIAL_DAUBECHIES_SCALING_HPP
- #define BOOST_MATH_SPECIAL_DAUBECHIES_SCALING_HPP
- #include <vector>
- #include <array>
- #include <cmath>
- #include <thread>
- #include <future>
- #include <iostream>
- #include <boost/math/special_functions/detail/daubechies_scaling_integer_grid.hpp>
- #include <boost/math/filters/daubechies.hpp>
- #include <boost/math/interpolators/detail/cubic_hermite_detail.hpp>
- #include <boost/math/interpolators/detail/quintic_hermite_detail.hpp>
- #include <boost/math/interpolators/detail/septic_hermite_detail.hpp>
- namespace boost::math {
- template<class Real, int p, int order>
- std::vector<Real> daubechies_scaling_dyadic_grid(int64_t j_max)
- {
- using std::isnan;
- using std::sqrt;
- auto c = boost::math::filters::daubechies_scaling_filter<Real, p>();
- Real scale = sqrt(static_cast<Real>(2))*(1 << order);
- for (auto & x : c)
- {
- x *= scale;
- }
- auto phik = detail::daubechies_scaling_integer_grid<Real, p, order>();
- // Maximum sensible j for 32 bit floats is j_max = 22:
- if (std::is_same_v<Real, float>)
- {
- if (j_max > 23)
- {
- throw std::logic_error("Requested dyadic grid more dense than number of representables on the interval.");
- }
- }
- std::vector<Real> v(2*p + (2*p-1)*((1<<j_max) -1), std::numeric_limits<Real>::quiet_NaN());
- v[0] = 0;
- v[v.size()-1] = 0;
- for (int64_t i = 0; i < (int64_t) phik.size(); ++i) {
- v[i*(1uLL<<j_max)] = phik[i];
- }
- for (int64_t j = 1; j <= j_max; ++j)
- {
- int64_t k_max = v.size()/(int64_t(1) << (j_max-j));
- for (int64_t k = 1; k < k_max; k += 2)
- {
- // Where this value will go:
- int64_t delivery_idx = k*(1uLL << (j_max-j));
- // This is a nice check, but we've tested this exhaustively, and it's an expensive check:
- //if (delivery_idx >= (int64_t) v.size()) {
- // std::cerr << "Delivery index out of range!\n";
- // continue;
- //}
- Real term = 0;
- for (int64_t l = 0; l < (int64_t) c.size(); ++l)
- {
- int64_t idx = k*(int64_t(1) << (j_max - j + 1)) - l*(int64_t(1) << j_max);
- if (idx < 0)
- {
- break;
- }
- if (idx < (int64_t) v.size())
- {
- term += c[l]*v[idx];
- }
- }
- // Again, another nice check:
- //if (!isnan(v[delivery_idx])) {
- // std::cerr << "Delivery index already populated!, = " << v[delivery_idx] << "\n";
- // std::cerr << "would overwrite with " << term << "\n";
- //}
- v[delivery_idx] = term;
- }
- }
- return v;
- }
- namespace detail {
- template<class RandomAccessContainer>
- class matched_holder {
- public:
- using Real = typename RandomAccessContainer::value_type;
- matched_holder(RandomAccessContainer && y, RandomAccessContainer && dydx, int grid_refinements, Real x0) : x0_{x0}, y_{std::move(y)}, dy_{std::move(dydx)}
- {
- inv_h_ = (1 << grid_refinements);
- Real h = 1/inv_h_;
- for (auto & dy : dy_)
- {
- dy *= h;
- }
- }
- inline Real operator()(Real x) const
- {
- using std::floor;
- using std::sqrt;
- // This is the exact Holder exponent, but it's pessimistic almost everywhere!
- // It's only exactly right at dyadic rationals.
- //Real const alpha = 2 - log(1+sqrt(Real(3)))/log(Real(2));
- // We're gonna use alpha = 1/2, rather than 0.5500...
- Real s = (x-x0_)*inv_h_;
- Real ii = floor(s);
- auto i = static_cast<decltype(y_.size())>(ii);
- Real t = s - ii;
- Real dphi = dy_[i+1];
- Real diff = y_[i+1] - y_[i];
- return y_[i] + (2*dphi - diff)*t + 2*sqrt(t)*(diff-dphi);
- }
- int64_t bytes() const
- {
- return 2*y_.size()*sizeof(Real) + sizeof(this);
- }
- private:
- Real x0_;
- Real inv_h_;
- RandomAccessContainer y_;
- RandomAccessContainer dy_;
- };
- template<class RandomAccessContainer>
- class matched_holder_aos {
- public:
- using Point = typename RandomAccessContainer::value_type;
- using Real = typename Point::value_type;
- matched_holder_aos(RandomAccessContainer && data, int grid_refinements, Real x0) : x0_{x0}, data_{std::move(data)}
- {
- inv_h_ = Real(1uLL << grid_refinements);
- Real h = 1/inv_h_;
- for (auto & datum : data_)
- {
- datum[1] *= h;
- }
- }
- inline Real operator()(Real x) const
- {
- using std::floor;
- using std::sqrt;
- Real s = (x-x0_)*inv_h_;
- Real ii = floor(s);
- auto i = static_cast<decltype(data_.size())>(ii);
- Real t = s - ii;
- Real y0 = data_[i][0];
- Real y1 = data_[i+1][0];
- Real dphi = data_[i+1][1];
- Real diff = y1 - y0;
- return y0 + (2*dphi - diff)*t + 2*sqrt(t)*(diff-dphi);
- }
- int64_t bytes() const
- {
- return data_.size()*data_[0].size()*sizeof(Real) + sizeof(this);
- }
- private:
- Real x0_;
- Real inv_h_;
- RandomAccessContainer data_;
- };
- template<class RandomAccessContainer>
- class linear_interpolation {
- public:
- using Real = typename RandomAccessContainer::value_type;
- linear_interpolation(RandomAccessContainer && y, RandomAccessContainer && dydx, int grid_refinements) : y_{std::move(y)}, dydx_{std::move(dydx)}
- {
- s_ = (1 << grid_refinements);
- }
- inline Real operator()(Real x) const
- {
- using std::floor;
- Real y = x*s_;
- Real k = floor(y);
- int64_t kk = static_cast<int64_t>(k);
- Real t = y - k;
- return (1-t)*y_[kk] + t*y_[kk+1];
- }
- inline Real prime(Real x) const
- {
- using std::floor;
- Real y = x*s_;
- Real k = floor(y);
- int64_t kk = static_cast<int64_t>(k);
- Real t = y - k;
- return (1-t)*dydx_[kk] + t*dydx_[kk+1];
- }
- int64_t bytes() const
- {
- return (1 + y_.size() + dydx_.size())*sizeof(Real) + sizeof(y_) + sizeof(dydx_);
- }
- private:
- Real s_;
- RandomAccessContainer y_;
- RandomAccessContainer dydx_;
- };
- template<class RandomAccessContainer>
- class linear_interpolation_aos {
- public:
- using Point = typename RandomAccessContainer::value_type;
- using Real = typename Point::value_type;
- linear_interpolation_aos(RandomAccessContainer && data, int grid_refinements, Real x0) : x0_{x0}, data_{std::move(data)}
- {
- s_ = Real(1uLL << grid_refinements);
- }
- inline Real operator()(Real x) const
- {
- using std::floor;
- Real y = (x-x0_)*s_;
- Real k = floor(y);
- int64_t kk = static_cast<int64_t>(k);
- Real t = y - k;
- return (t != 0) ? (1-t)*data_[kk][0] + t*data_[kk+1][0] : data_[kk][0];
- }
- inline Real prime(Real x) const
- {
- using std::floor;
- Real y = (x-x0_)*s_;
- Real k = floor(y);
- int64_t kk = static_cast<int64_t>(k);
- Real t = y - k;
- return t != 0 ? (1-t)*data_[kk][1] + t*data_[kk+1][1] : data_[kk][1];
- }
- int64_t bytes() const
- {
- return sizeof(this) + data_.size()*data_[0].size()*sizeof(Real);
- }
- private:
- Real x0_;
- Real s_;
- RandomAccessContainer data_;
- };
- template <class T>
- struct daubechies_eval_type
- {
- typedef T type;
- static const std::vector<T>& vector_cast(const std::vector<T>& v) { return v; }
- };
- template <>
- struct daubechies_eval_type<float>
- {
- typedef double type;
- inline static std::vector<float> vector_cast(const std::vector<double>& v)
- {
- std::vector<float> result(v.size());
- for (unsigned i = 0; i < v.size(); ++i)
- result[i] = static_cast<float>(v[i]);
- return result;
- }
- };
- template <>
- struct daubechies_eval_type<double>
- {
- typedef long double type;
- inline static std::vector<double> vector_cast(const std::vector<long double>& v)
- {
- std::vector<double> result(v.size());
- for (unsigned i = 0; i < v.size(); ++i)
- result[i] = static_cast<double>(v[i]);
- return result;
- }
- };
- struct null_interpolator
- {
- template <class T>
- T operator()(const T&)
- {
- return 1;
- }
- };
- } // namespace detail
- template<class Real, int p>
- class daubechies_scaling {
- //
- // Some type manipulation so we know the type of the interpolator, and the vector type it requires:
- //
- typedef std::vector<std::array<Real, p < 6 ? 2 : p < 10 ? 3 : 4>> vector_type;
- //
- // List our interpolators:
- //
- typedef std::tuple<
- detail::null_interpolator, detail::matched_holder_aos<vector_type>, detail::linear_interpolation_aos<vector_type>,
- interpolators::detail::cardinal_cubic_hermite_detail_aos<vector_type>, interpolators::detail::cardinal_quintic_hermite_detail_aos<vector_type>,
- interpolators::detail::cardinal_septic_hermite_detail_aos<vector_type> > interpolator_list;
- //
- // Select the one we need:
- //
- typedef std::tuple_element_t<
- p == 1 ? 0 :
- p == 2 ? 1 :
- p == 3 ? 2 :
- p <= 5 ? 3 :
- p <= 9 ? 4 : 5, interpolator_list> interpolator_type;
- public:
- daubechies_scaling(int grid_refinements = -1)
- {
- static_assert(p < 20, "Daubechies scaling functions are only implemented for p < 20.");
- static_assert(p > 0, "Daubechies scaling functions must have at least 1 vanishing moment.");
- if constexpr (p == 1)
- {
- return;
- }
- else {
- if (grid_refinements < 0)
- {
- if (std::is_same_v<Real, float>)
- {
- if (grid_refinements == -2)
- {
- // Control absolute error:
- // p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- std::array<int, 20> r{ -1, -1, 18, 19, 16, 11, 8, 7, 7, 7, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3 };
- grid_refinements = r[p];
- }
- else
- {
- // Control relative error:
- // p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- std::array<int, 20> r{ -1, -1, 21, 21, 21, 17, 16, 15, 14, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11 };
- grid_refinements = r[p];
- }
- }
- else if (std::is_same_v<Real, double>)
- {
- // p= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- std::array<int, 20> r{ -1, -1, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 18, 18, 18 };
- grid_refinements = r[p];
- }
- else
- {
- grid_refinements = 21;
- }
- }
- // Compute the refined grid:
- // In fact for float precision I know the grid must be computed in double precision and then cast back down, or else parts of the support are systematically inaccurate.
- std::future<std::vector<Real>> t0 = std::async(std::launch::async, [&grid_refinements]() {
- // Computing in higher precision and downcasting is essential for 1ULP evaluation in float precision:
- auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 0>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- // Compute the derivative of the refined grid:
- std::future<std::vector<Real>> t1 = std::async(std::launch::async, [&grid_refinements]() {
- auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 1>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- // if necessary, compute the second and third derivative:
- std::vector<Real> d2ydx2;
- std::vector<Real> d3ydx3;
- if constexpr (p >= 6) {
- std::future<std::vector<Real>> t3 = std::async(std::launch::async, [&grid_refinements]() {
- auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 2>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- if constexpr (p >= 10) {
- std::future<std::vector<Real>> t4 = std::async(std::launch::async, [&grid_refinements]() {
- auto v = daubechies_scaling_dyadic_grid<typename detail::daubechies_eval_type<Real>::type, p, 3>(grid_refinements);
- return detail::daubechies_eval_type<Real>::vector_cast(v);
- });
- d3ydx3 = t4.get();
- }
- d2ydx2 = t3.get();
- }
- auto y = t0.get();
- auto dydx = t1.get();
- if constexpr (p >= 2)
- {
- vector_type data(y.size());
- for (size_t i = 0; i < y.size(); ++i)
- {
- data[i][0] = y[i];
- data[i][1] = dydx[i];
- if constexpr (p >= 6)
- data[i][2] = d2ydx2[i];
- if constexpr (p >= 10)
- data[i][3] = d3ydx3[i];
- }
- if constexpr (p <= 3)
- m_interpolator = std::make_shared<interpolator_type>(std::move(data), grid_refinements, Real(0));
- else
- m_interpolator = std::make_shared<interpolator_type>(std::move(data), Real(0), Real(1) / (1 << grid_refinements));
- }
- else
- m_interpolator = std::make_shared<detail::null_interpolator>();
- }
- }
- inline Real operator()(Real x) const
- {
- if (x <= 0 || x >= 2*p-1)
- {
- return 0;
- }
- return (*m_interpolator)(x);
- }
- inline Real prime(Real x) const
- {
- static_assert(p > 2, "The 3-vanishing moment Daubechies scaling function is the first which is continuously differentiable.");
- if (x <= 0 || x >= 2*p-1)
- {
- return 0;
- }
- return m_interpolator->prime(x);
- }
- inline Real double_prime(Real x) const
- {
- static_assert(p >= 6, "Second derivatives require at least 6 vanishing moments.");
- if (x <= 0 || x >= 2*p - 1)
- {
- return Real(0);
- }
- return m_interpolator->double_prime(x);
- }
- std::pair<Real, Real> support() const
- {
- return {Real(0), Real(2*p-1)};
- }
- int64_t bytes() const
- {
- return m_interpolator->bytes() + sizeof(m_interpolator);
- }
- private:
- std::shared_ptr<interpolator_type> m_interpolator;
- };
- }
- #endif
|