123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635 |
- // Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com)
- //
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // This module implements the Hyper-Exponential distribution.
- //
- // References:
- // - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993)
- // - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html
- // - http://en.wikipedia.org/wiki/Hyperexponential_distribution
- //
- #ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
- #define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
- #include <boost/config.hpp>
- #include <boost/math/tools/cxx03_warn.hpp>
- #include <boost/math/distributions/complement.hpp>
- #include <boost/math/distributions/detail/common_error_handling.hpp>
- #include <boost/math/distributions/exponential.hpp>
- #include <boost/math/policies/policy.hpp>
- #include <boost/math/special_functions/fpclassify.hpp>
- #include <boost/math/tools/precision.hpp>
- #include <boost/math/tools/roots.hpp>
- #include <boost/range/begin.hpp>
- #include <boost/range/end.hpp>
- #include <boost/range/size.hpp>
- #include <boost/type_traits/has_pre_increment.hpp>
- #include <cstddef>
- #include <iterator>
- #include <limits>
- #include <numeric>
- #include <utility>
- #include <vector>
- #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
- # include <initializer_list>
- #endif
- #ifdef _MSC_VER
- # pragma warning (push)
- # pragma warning(disable:4127) // conditional expression is constant
- # pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools
- #endif // _MSC_VER
- namespace boost { namespace math {
- namespace detail {
- template <typename Dist>
- typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function);
- } // Namespace detail
- template <typename RealT, typename PolicyT>
- class hyperexponential_distribution;
- namespace /*<unnamed>*/ { namespace hyperexp_detail {
- template <typename T>
- void normalize(std::vector<T>& v)
- {
- if(!v.size())
- return; // Our error handlers will get this later
- const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
- T final_sum = 0;
- const typename std::vector<T>::iterator end = --v.end();
- for (typename std::vector<T>::iterator it = v.begin();
- it != end;
- ++it)
- {
- *it /= sum;
- final_sum += *it;
- }
- *end = 1 - final_sum; // avoids round off errors, ensures the probs really do sum to 1.
- }
- template <typename RealT, typename PolicyT>
- bool check_probabilities(char const* function, std::vector<RealT> const& probabilities, RealT* presult, PolicyT const& pol)
- {
- BOOST_MATH_STD_USING
- const std::size_t n = probabilities.size();
- RealT sum = 0;
- for (std::size_t i = 0; i < n; ++i)
- {
- if (probabilities[i] < 0
- || probabilities[i] > 1
- || !(boost::math::isfinite)(probabilities[i]))
- {
- *presult = policies::raise_domain_error<RealT>(function,
- "The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.",
- probabilities[i],
- pol);
- return false;
- }
- sum += probabilities[i];
- }
- //
- // We try to keep phase probabilities correctly normalized in the distribution constructors,
- // however in practice we have to allow for a very slight divergence from a sum of exactly 1:
- //
- if (fabs(sum - 1) > tools::epsilon<RealT>() * 2)
- {
- *presult = policies::raise_domain_error<RealT>(function,
- "The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.",
- sum,
- pol);
- return false;
- }
- return true;
- }
- template <typename RealT, typename PolicyT>
- bool check_rates(char const* function, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
- {
- const std::size_t n = rates.size();
- for (std::size_t i = 0; i < n; ++i)
- {
- if (rates[i] <= 0
- || !(boost::math::isfinite)(rates[i]))
- {
- *presult = policies::raise_domain_error<RealT>(function,
- "The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.",
- rates[i],
- pol);
- return false;
- }
- }
- return true;
- }
- template <typename RealT, typename PolicyT>
- bool check_dist(char const* function, std::vector<RealT> const& probabilities, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
- {
- BOOST_MATH_STD_USING
- if (probabilities.size() != rates.size())
- {
- *presult = policies::raise_domain_error<RealT>(function,
- "The parameters \"probabilities\" and \"rates\" must have the same length, but their size differ by: %1%.",
- fabs(static_cast<RealT>(probabilities.size())-static_cast<RealT>(rates.size())),
- pol);
- return false;
- }
- return check_probabilities(function, probabilities, presult, pol)
- && check_rates(function, rates, presult, pol);
- }
- template <typename RealT, typename PolicyT>
- bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol)
- {
- if (x < 0 || (boost::math::isnan)(x))
- {
- *presult = policies::raise_domain_error<RealT>(function, "The random variable must be >= 0, but is: %1%.", x, pol);
- return false;
- }
- return true;
- }
- template <typename RealT, typename PolicyT>
- bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol)
- {
- if (p < 0 || p > 1 || (boost::math::isnan)(p))
- {
- *presult = policies::raise_domain_error<RealT>(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol);
- return false;
- }
- return true;
- }
- template <typename RealT, typename PolicyT>
- RealT quantile_impl(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p, bool comp)
- {
- // Don't have a closed form so try to numerically solve the inverse CDF...
- typedef typename policies::evaluation<RealT, PolicyT>::type value_type;
- typedef typename policies::normalise<PolicyT,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type<boost::math::hyperexponential_distribution<%1%>, %1%>&)"
- : "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)";
- RealT result = 0;
- if (!check_probability(function, p, &result, PolicyT()))
- {
- return result;
- }
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- // A possible (but inaccurate) approximation is given below, where the
- // quantile is given by the weighted sum of exponential quantiles:
- RealT guess = 0;
- if (comp)
- {
- for (std::size_t i = 0; i < n; ++i)
- {
- const exponential_distribution<RealT,PolicyT> exp(rates[i]);
- guess += probs[i]*quantile(complement(exp, p));
- }
- }
- else
- {
- for (std::size_t i = 0; i < n; ++i)
- {
- const exponential_distribution<RealT,PolicyT> exp(rates[i]);
- guess += probs[i]*quantile(exp, p);
- }
- }
- // Fast return in case the Hyper-Exponential is essentially an Exponential
- if (n == 1)
- {
- return guess;
- }
- value_type q;
- q = detail::generic_quantile(hyperexponential_distribution<RealT,forwarding_policy>(probs, rates),
- p,
- guess,
- comp,
- function);
- result = policies::checked_narrowing_cast<RealT,forwarding_policy>(q, function);
- return result;
- }
- }} // Namespace <unnamed>::hyperexp_detail
- template <typename RealT = double, typename PolicyT = policies::policy<> >
- class hyperexponential_distribution
- {
- public: typedef RealT value_type;
- public: typedef PolicyT policy_type;
- public: hyperexponential_distribution()
- : probs_(1, 1),
- rates_(1, 1)
- {
- RealT err;
- hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
- probs_,
- rates_,
- &err,
- PolicyT());
- }
- // Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators:
- public: template <typename ProbIterT, typename RateIterT>
- hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
- RateIterT rate_first, RateIterT rate_last)
- : probs_(prob_first, prob_last),
- rates_(rate_first, rate_last)
- {
- hyperexp_detail::normalize(probs_);
- RealT err;
- hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
- probs_,
- rates_,
- &err,
- PolicyT());
- }
- // Two arg constructor from 2 ranges, we SFINAE this out of existence if
- // either argument type is incrementable as in that case the type is
- // probably an iterator:
- public: template <typename ProbRangeT, typename RateRangeT>
- hyperexponential_distribution(ProbRangeT const& prob_range,
- RateRangeT const& rate_range,
- typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0)
- : probs_(boost::begin(prob_range), boost::end(prob_range)),
- rates_(boost::begin(rate_range), boost::end(rate_range))
- {
- hyperexp_detail::normalize(probs_);
- RealT err;
- hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
- probs_,
- rates_,
- &err,
- PolicyT());
- }
- // Two arg constructor for a pair of iterators: we SFINAE this out of
- // existence if neither argument types are incrementable.
- // Note that we allow different argument types here to allow for
- // construction from an array plus a pointer into that array.
- public: template <typename RateIterT, typename RateIterT2>
- hyperexponential_distribution(RateIterT const& rate_first,
- RateIterT2 const& rate_last,
- typename std::enable_if<boost::has_pre_increment<RateIterT>::value || boost::has_pre_increment<RateIterT2>::value>::type* = 0)
- : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
- rates_(rate_first, rate_last)
- {
- hyperexp_detail::normalize(probs_);
- RealT err;
- hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
- probs_,
- rates_,
- &err,
- PolicyT());
- }
- #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
- // Initializer list constructor: allows for construction from array literals:
- public: hyperexponential_distribution(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
- : probs_(l1.begin(), l1.end()),
- rates_(l2.begin(), l2.end())
- {
- hyperexp_detail::normalize(probs_);
- RealT err;
- hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
- probs_,
- rates_,
- &err,
- PolicyT());
- }
- public: hyperexponential_distribution(std::initializer_list<RealT> l1)
- : probs_(l1.size(), 1),
- rates_(l1.begin(), l1.end())
- {
- hyperexp_detail::normalize(probs_);
- RealT err;
- hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
- probs_,
- rates_,
- &err,
- PolicyT());
- }
- #endif // !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
- // Single argument constructor: argument must be a range.
- public: template <typename RateRangeT>
- hyperexponential_distribution(RateRangeT const& rate_range)
- : probs_(boost::size(rate_range), 1), // will be normalized below
- rates_(boost::begin(rate_range), boost::end(rate_range))
- {
- hyperexp_detail::normalize(probs_);
- RealT err;
- hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
- probs_,
- rates_,
- &err,
- PolicyT());
- }
- public: std::vector<RealT> probabilities() const
- {
- return probs_;
- }
- public: std::vector<RealT> rates() const
- {
- return rates_;
- }
- public: std::size_t num_phases() const
- {
- return rates_.size();
- }
- private: std::vector<RealT> probs_;
- private: std::vector<RealT> rates_;
- }; // class hyperexponential_distribution
- // Convenient type synonym for double.
- typedef hyperexponential_distribution<double> hyperexponential;
- // Range of permissible values for random variable x
- template <typename RealT, typename PolicyT>
- std::pair<RealT,RealT> range(hyperexponential_distribution<RealT,PolicyT> const&)
- {
- if (std::numeric_limits<RealT>::has_infinity)
- {
- return std::make_pair(static_cast<RealT>(0), std::numeric_limits<RealT>::infinity()); // 0 to +inf.
- }
- return std::make_pair(static_cast<RealT>(0), tools::max_value<RealT>()); // 0 to +<max value>
- }
- // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- template <typename RealT, typename PolicyT>
- std::pair<RealT,RealT> support(hyperexponential_distribution<RealT,PolicyT> const&)
- {
- return std::make_pair(tools::min_value<RealT>(), tools::max_value<RealT>()); // <min value> to +<max value>.
- }
- template <typename RealT, typename PolicyT>
- RealT pdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
- {
- BOOST_MATH_STD_USING
- RealT result = 0;
- if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
- {
- return result;
- }
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- for (std::size_t i = 0; i < n; ++i)
- {
- const exponential_distribution<RealT,PolicyT> exp(rates[i]);
- result += probs[i]*pdf(exp, x);
- //result += probs[i]*rates[i]*exp(-rates[i]*x);
- }
- return result;
- }
- template <typename RealT, typename PolicyT>
- RealT cdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
- {
- RealT result = 0;
- if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
- {
- return result;
- }
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- for (std::size_t i = 0; i < n; ++i)
- {
- const exponential_distribution<RealT,PolicyT> exp(rates[i]);
- result += probs[i]*cdf(exp, x);
- }
- return result;
- }
- template <typename RealT, typename PolicyT>
- RealT quantile(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p)
- {
- return hyperexp_detail::quantile_impl(dist, p , false);
- }
- template <typename RealT, typename PolicyT>
- RealT cdf(complemented2_type<hyperexponential_distribution<RealT,PolicyT>, RealT> const& c)
- {
- RealT const& x = c.param;
- hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
- RealT result = 0;
- if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type<const boost::math::hyperexponential_distribution<%1%>&, %1%>)", x, &result, PolicyT()))
- {
- return result;
- }
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- for (std::size_t i = 0; i < n; ++i)
- {
- const exponential_distribution<RealT,PolicyT> exp(rates[i]);
- result += probs[i]*cdf(complement(exp, x));
- }
- return result;
- }
- template <typename RealT, typename PolicyT>
- RealT quantile(complemented2_type<hyperexponential_distribution<RealT, PolicyT>, RealT> const& c)
- {
- RealT const& p = c.param;
- hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
- return hyperexp_detail::quantile_impl(dist, p , true);
- }
- template <typename RealT, typename PolicyT>
- RealT mean(hyperexponential_distribution<RealT, PolicyT> const& dist)
- {
- RealT result = 0;
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- for (std::size_t i = 0; i < n; ++i)
- {
- const exponential_distribution<RealT,PolicyT> exp(rates[i]);
- result += probs[i]*mean(exp);
- }
- return result;
- }
- template <typename RealT, typename PolicyT>
- RealT variance(hyperexponential_distribution<RealT, PolicyT> const& dist)
- {
- RealT result = 0;
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- for (std::size_t i = 0; i < n; ++i)
- {
- result += probs[i]/(rates[i]*rates[i]);
- }
- const RealT mean = boost::math::mean(dist);
- result = 2*result-mean*mean;
- return result;
- }
- template <typename RealT, typename PolicyT>
- RealT skewness(hyperexponential_distribution<RealT,PolicyT> const& dist)
- {
- BOOST_MATH_STD_USING
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
- RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
- RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
- for (std::size_t i = 0; i < n; ++i)
- {
- const RealT p = probs[i];
- const RealT r = rates[i];
- const RealT r2 = r*r;
- const RealT r3 = r2*r;
- s1 += p/r;
- s2 += p/r2;
- s3 += p/r3;
- }
- const RealT s1s1 = s1*s1;
- const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1);
- const RealT den = (2*s2 - s1s1);
- return num / pow(den, static_cast<RealT>(1.5));
- }
- template <typename RealT, typename PolicyT>
- RealT kurtosis(hyperexponential_distribution<RealT,PolicyT> const& dist)
- {
- const std::size_t n = dist.num_phases();
- const std::vector<RealT> probs = dist.probabilities();
- const std::vector<RealT> rates = dist.rates();
- RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
- RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
- RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
- RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4}
- for (std::size_t i = 0; i < n; ++i)
- {
- const RealT p = probs[i];
- const RealT r = rates[i];
- const RealT r2 = r*r;
- const RealT r3 = r2*r;
- const RealT r4 = r3*r;
- s1 += p/r;
- s2 += p/r2;
- s3 += p/r3;
- s4 += p/r4;
- }
- const RealT s1s1 = s1*s1;
- const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1);
- const RealT den = (2*s2 - s1s1);
- return num/(den*den);
- }
- template <typename RealT, typename PolicyT>
- RealT kurtosis_excess(hyperexponential_distribution<RealT,PolicyT> const& dist)
- {
- return kurtosis(dist) - 3;
- }
- template <typename RealT, typename PolicyT>
- RealT mode(hyperexponential_distribution<RealT,PolicyT> const& /*dist*/)
- {
- return 0;
- }
- }} // namespace boost::math
- #ifdef BOOST_MSVC
- #pragma warning (pop)
- #endif
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #include <boost/math/distributions/detail/generic_quantile.hpp>
- #endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL
|