123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- // Copyright 2008 John Maddock
- //
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_QUANTILE_HPP
- #define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_QUANTILE_HPP
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/distributions/detail/hypergeometric_pdf.hpp>
- namespace boost{ namespace math{ namespace detail{
- template <class T>
- inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_down>&)
- {
- if((p < cum * fudge_factor) && (x != lbound))
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(x-1);
- return --x;
- }
- return x;
- }
- template <class T>
- inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned /*lbound*/, unsigned ubound, const policies::discrete_quantile<policies::integer_round_up>&)
- {
- if((cum < p * fudge_factor) && (x != ubound))
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(x+1);
- return ++x;
- }
- return x;
- }
- template <class T>
- inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_inwards>&)
- {
- if(p >= 0.5)
- return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
- return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
- }
- template <class T>
- inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_outwards>&)
- {
- if(p >= 0.5)
- return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
- return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
- }
- template <class T>
- inline unsigned round_x_from_p(unsigned x, T /*p*/, T /*cum*/, T /*fudge_factor*/, unsigned /*lbound*/, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_nearest>&)
- {
- return x;
- }
- template <class T>
- inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_down>&)
- {
- if((q * fudge_factor > cum) && (x != lbound))
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(x-1);
- return --x;
- }
- return x;
- }
- template <class T>
- inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned /*lbound*/, unsigned ubound, const policies::discrete_quantile<policies::integer_round_up>&)
- {
- if((q < cum * fudge_factor) && (x != ubound))
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(x+1);
- return ++x;
- }
- return x;
- }
- template <class T>
- inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_inwards>&)
- {
- if(q < 0.5)
- return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
- return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
- }
- template <class T>
- inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_outwards>&)
- {
- if(q >= 0.5)
- return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
- return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
- }
- template <class T>
- inline unsigned round_x_from_q(unsigned x, T /*q*/, T /*cum*/, T /*fudge_factor*/, unsigned /*lbound*/, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_nearest>&)
- {
- return x;
- }
- template <class T, class Policy>
- unsigned hypergeometric_quantile_imp(T p, T q, unsigned r, unsigned n, unsigned N, const Policy& pol)
- {
- #ifdef BOOST_MSVC
- # pragma warning(push)
- # pragma warning(disable:4267)
- #endif
- typedef typename Policy::discrete_quantile_type discrete_quantile_type;
- BOOST_MATH_STD_USING
- BOOST_FPU_EXCEPTION_GUARD
- T result;
- T fudge_factor = 1 + tools::epsilon<T>() * ((N <= boost::math::prime(boost::math::max_prime - 1)) ? 50 : 2 * N);
- unsigned base = static_cast<unsigned>((std::max)(0, (int)(n + r) - (int)(N)));
- unsigned lim = (std::min)(r, n);
- BOOST_MATH_INSTRUMENT_VARIABLE(p);
- BOOST_MATH_INSTRUMENT_VARIABLE(q);
- BOOST_MATH_INSTRUMENT_VARIABLE(r);
- BOOST_MATH_INSTRUMENT_VARIABLE(n);
- BOOST_MATH_INSTRUMENT_VARIABLE(N);
- BOOST_MATH_INSTRUMENT_VARIABLE(fudge_factor);
- BOOST_MATH_INSTRUMENT_VARIABLE(base);
- BOOST_MATH_INSTRUMENT_VARIABLE(lim);
- if(p <= 0.5)
- {
- unsigned x = base;
- result = hypergeometric_pdf<T>(x, r, n, N, pol);
- T diff = result;
- if (diff == 0)
- {
- ++x;
- // We want to skip through x values as fast as we can until we start getting non-zero values,
- // otherwise we're just making lots of expensive PDF calls:
- T log_pdf = boost::math::lgamma(static_cast<T>(n + 1), pol)
- + boost::math::lgamma(static_cast<T>(r + 1), pol)
- + boost::math::lgamma(static_cast<T>(N - n + 1), pol)
- + boost::math::lgamma(static_cast<T>(N - r + 1), pol)
- - boost::math::lgamma(static_cast<T>(N + 1), pol)
- - boost::math::lgamma(static_cast<T>(x + 1), pol)
- - boost::math::lgamma(static_cast<T>(n - x + 1), pol)
- - boost::math::lgamma(static_cast<T>(r - x + 1), pol)
- - boost::math::lgamma(static_cast<T>(N - n - r + x + 1), pol);
- while (log_pdf < tools::log_min_value<T>())
- {
- log_pdf += -log(static_cast<T>(x + 1)) + log(static_cast<T>(n - x)) + log(static_cast<T>(r - x)) - log(static_cast<T>(N - n - r + x + 1));
- ++x;
- }
- // By the time we get here, log_pdf may be fairly inaccurate due to
- // roundoff errors, get a fresh PDF calculation before proceeding:
- diff = hypergeometric_pdf<T>(x, r, n, N, pol);
- }
- while(result < p)
- {
- diff = (diff > tools::min_value<T>() * 8)
- ? T(n - x) * T(r - x) * diff / (T(x + 1) * T(N + x + 1 - n - r))
- : hypergeometric_pdf<T>(x + 1, r, n, N, pol);
- if(result + diff / 2 > p)
- break;
- ++x;
- result += diff;
- #ifdef BOOST_MATH_INSTRUMENT
- if(diff != 0)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(x);
- BOOST_MATH_INSTRUMENT_VARIABLE(diff);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- #endif
- }
- return round_x_from_p(x, p, result, fudge_factor, base, lim, discrete_quantile_type());
- }
- else
- {
- unsigned x = lim;
- result = 0;
- T diff = hypergeometric_pdf<T>(x, r, n, N, pol);
- if (diff == 0)
- {
- // We want to skip through x values as fast as we can until we start getting non-zero values,
- // otherwise we're just making lots of expensive PDF calls:
- --x;
- T log_pdf = boost::math::lgamma(static_cast<T>(n + 1), pol)
- + boost::math::lgamma(static_cast<T>(r + 1), pol)
- + boost::math::lgamma(static_cast<T>(N - n + 1), pol)
- + boost::math::lgamma(static_cast<T>(N - r + 1), pol)
- - boost::math::lgamma(static_cast<T>(N + 1), pol)
- - boost::math::lgamma(static_cast<T>(x + 1), pol)
- - boost::math::lgamma(static_cast<T>(n - x + 1), pol)
- - boost::math::lgamma(static_cast<T>(r - x + 1), pol)
- - boost::math::lgamma(static_cast<T>(N - n - r + x + 1), pol);
- while (log_pdf < tools::log_min_value<T>())
- {
- log_pdf += log(static_cast<T>(x)) - log(static_cast<T>(n - x + 1)) - log(static_cast<T>(r - x + 1)) + log(static_cast<T>(N - n - r + x));
- --x;
- }
- // By the time we get here, log_pdf may be fairly inaccurate due to
- // roundoff errors, get a fresh PDF calculation before proceeding:
- diff = hypergeometric_pdf<T>(x, r, n, N, pol);
- }
- while(result + diff / 2 < q)
- {
- result += diff;
- diff = (diff > tools::min_value<T>() * 8)
- ? x * T(N + x - n - r) * diff / (T(1 + n - x) * T(1 + r - x))
- : hypergeometric_pdf<T>(x - 1, r, n, N, pol);
- --x;
- #ifdef BOOST_MATH_INSTRUMENT
- if(diff != 0)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(x);
- BOOST_MATH_INSTRUMENT_VARIABLE(diff);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- #endif
- }
- return round_x_from_q(x, q, result, fudge_factor, base, lim, discrete_quantile_type());
- }
- #ifdef BOOST_MSVC
- # pragma warning(pop)
- #endif
- }
- template <class T, class Policy>
- inline unsigned hypergeometric_quantile(T p, T q, unsigned r, unsigned n, unsigned N, const Policy&)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::assert_undefined<> >::type forwarding_policy;
- return detail::hypergeometric_quantile_imp<value_type>(p, q, r, n, N, forwarding_policy());
- }
- }}} // namespaces
- #endif
|