123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731 |
- // Copyright (c) Microsoft Corporation. All rights reserved.
- // Licensed under the MIT License.
- // This file contains the training c apis.
- #pragma once
- #include <stdbool.h>
- #include "onnxruntime_c_api.h"
- /** \page training_c_cpp_api Training C & C++ APIs
- *
- * Training C and C++ APIs are an extension of the \ref c_cpp_api "onnxruntime core C and C++ APIs" and should be used in conjunction with them.
- *
- * In order to train a model with onnxruntime, the following training artifacts must be generated:
- * - The training onnx model
- * - The checkpoint file
- * - The optimizer onnx model
- * - The eval onnx model model (optional)
- *
- * These training artifacts can be generated as part of an offline step using the python [utilities](https://github.com/microsoft/onnxruntime/blob/main/orttraining/orttraining/python/training/onnxblock/README.md) made available in the `onnxruntime-training` python package.
- *
- * After these artifacts have been generated, the C and C++ utilities listed in this documentation can be leveraged to perform training.
- *
- * If any problem is encountered, please create an [issue](https://github.com/microsoft/onnxruntime/issues/new) with your scenario and requirements, and we will be sure to respond and follow up on the request.
- *
- * <h1>Training C API</h1>
- *
- * ::OrtTrainingApi - Training C API functions.
- *
- * This C structure contains functions that enable users to perform training with onnxruntime.
- *
- * _Sample Code_:
- *
- * ```c
- * #include <onnxruntime_training_api.h>
- *
- * OrtApi* g_ort_api = OrtGetApiBase()->GetApi(ORT_API_VERSION);
- * OrtTrainingApi* g_ort_training_api = g_ort_api->GetTrainingApi(ORT_API_VERSION);
- *
- * OrtEnv* env = NULL;
- * g_ort_api->CreateEnv(logging_level, logid, &env);
- * OrtSessionOptions* session_options = NULL;
- * g_ort_api->CreateSessionOptions(&session_options);
- *
- * OrtCheckpointState* state = NULL;
- * g_ort_training_api->LoadCheckpoint(path_to_checkpoint, &state);
- *
- * OrtTrainingSession* training_session = NULL;
- * g_ort_training_api->CreateTrainingSession(env, session_options, training_model_path,
- * state, eval_model_path, optimizer_model_path,
- * &training_session);
- * // Training loop
- * {
- * g_ort_training_api->TrainStep(...);
- * g_ort_training_api->OptimizerStep(...);
- * g_ort_training_api->LazyResetGrad(...);
- * }
- *
- * g_ort_training_api->ExportModelForInferencing(training_session, inference_model_path, ...);
- * g_ort_training_api->SaveCheckpoint(state, path_to_checkpoint, false);
- *
- * g_ort_training_api->ReleaseTrainingSession(training_session);
- * g_ort_training_api->ReleaseCheckpointState(state);
- * ```
- *
- * > **Note**
- * > The ::OrtCheckpointState contains the entire training state that the ::OrtTrainingSession uses. As a result, the training session must always have access to the state. That is to say, the ::OrtCheckpointState instance must outlive the lifetime of the ::OrtTrainingSession instance.
- *
- * <h1>Training C++ API</h1>
- *
- * @ref TrainingCpp - Training C++ API classes and functions.
- *
- * These C++ classes and functions enable users to perform training with onnxruntime.
- *
- * _Sample Code_:
- *
- * ```cc
- * #include <onnxruntime_training_cxx_api.h>
- *
- * Ort::Env env;
- * Ort::SessionOptions session_options;
- *
- * auto state = Ort::CheckpointState::LoadCheckpoint(path_to_checkpoint);
- * auto training_session = Ort::TrainingSession(env, session_options, state, training_model_path,
- * eval_model_path, optimizer_model_path);
- *
- * // Training Loop
- * {
- * training_session.TrainStep(...);
- * training_session.OptimizerStep(...);
- * training_session.LazyResetGrad(...);
- * }
- *
- * training_session->ExportModelForInferencing(inference_model_path, ...);
- * Ort::CheckpointState::SaveCheckpoint(state, path_to_checkpoint, false);
- * ```
- * > **Note**
- * > The ::Ort::CheckpointState contains the entire training state that the ::Ort::TrainingSession uses. As a result, the training session must always have access to the state. That is to say, the ::Ort::CheckpointState instance must outlive the lifetime of the ::Ort::TrainingSession instance.
- */
- /** @defgroup TrainingC Ort Training C API
- * @{
- */
- ORT_RUNTIME_CLASS(TrainingSession); // Type that enables performing training for the given user models.
- ORT_RUNTIME_CLASS(CheckpointState); // Type that holds the training states for the training session.
- /** \brief Type of property to be added to or returned from the ::OrtCheckpointState.
- */
- typedef enum OrtPropertyType {
- OrtIntProperty = 0,
- OrtFloatProperty = 1,
- OrtStringProperty = 2,
- } OrtPropertyType;
- /** \brief The Training C API that holds onnxruntime training function pointers
- *
- * All the Training C API functions are defined inside this structure as pointers to functions.
- * Call OrtApi::GetTrainingApi to get a pointer to this struct.
- *
- * \nosubgrouping
- */
- struct OrtTrainingApi {
- /// \name Accessing The Training Session State
- /// @{
- /** \brief Load a checkpoint state from a file on disk into checkpoint_state.
- *
- * This function will parse a checkpoint file, pull relevant data and load the training
- * state into the checkpoint_state. This checkpoint state can then be used to create the
- * training session by invoking OrtTrainingApi::CreateTrainingSession. By doing so, the training
- * session will resume training from the given checkpoint state.
- * \note Note that the training session created with a checkpoint state uses this state to store the entire
- * training state (including model parameters, its gradients, the optimizer states and the properties).
- * As a result, it is required that the checkpoint state outlive the lifetime of the training session.
- * \note Note that the checkpoint file can be either the complete checkpoint or the nominal checkpoint.
- *
- * \param[in] checkpoint_path Path to the checkpoint file
- * \param[out] checkpoint_state Checkpoint state that contains the states of the training session.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(LoadCheckpoint, _In_ const ORTCHAR_T* checkpoint_path,
- _Outptr_ OrtCheckpointState** checkpoint_state);
- /** \brief Save the given state to a checkpoint file on disk.
- *
- * This function serializes the provided checkpoint state to a file on disk.
- * This checkpoint can later be loaded by invoking OrtTrainingApi::LoadCheckpoint to resume
- * training from this snapshot of the state.
- *
- * \param[in] checkpoint_state The checkpoint state to save.
- * \param[in] checkpoint_path Path to the checkpoint file.
- * \param[in] include_optimizer_state Flag to indicate whether to save the optimizer state or not.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(SaveCheckpoint, _In_ OrtCheckpointState* checkpoint_state, _In_ const ORTCHAR_T* checkpoint_path,
- const bool include_optimizer_state);
- /// @}
- /// \name Implementing The Training Loop
- /// @{
- /** \brief Create a training session that can be used to begin or resume training.
- *
- * This function creates a training session based on the env and session options provided that can
- * begin or resume training from a given checkpoint state for the given onnx models.
- * The checkpoint state represents the parameters of the training session which will be moved
- * to the device specified by the user through the session options (if necessary).
- * The training session requires four training artifacts
- * - The training onnx model
- * - The evaluation onnx model (optional)
- * - The optimizer onnx model
- * - The checkpoint file
- *
- * These artifacts can be generated using the `onnxruntime-training` python [utility](https://github.com/microsoft/onnxruntime/blob/main/orttraining/orttraining/python/training/onnxblock/README.md).
- *
- * \param[in] env Environment to be used for the training session.
- * \param[in] options Session options that the user can customize for this training session.
- * \param[in] checkpoint_state Training states that the training session uses as a starting point for training.
- * \param[in] train_model_path Model to be used to perform training.
- * \param[in] eval_model_path Model to be used to perform evaluation.
- * \param[in] optimizer_model_path Model to be used to perform gradient descent.
- * \param[out] out Created training session.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(CreateTrainingSession, _In_ const OrtEnv* env, _In_ const OrtSessionOptions* options,
- _Inout_ OrtCheckpointState* checkpoint_state, _In_ const ORTCHAR_T* train_model_path,
- _In_ const ORTCHAR_T* eval_model_path, _In_ const ORTCHAR_T* optimizer_model_path,
- _Outptr_result_maybenull_ OrtTrainingSession** out);
- /** \brief Create a training session that can be used to begin or resume training.
- * This api provides a way to load all the training artifacts from buffers instead of files.
- *
- * \param[in] env Environment to be used for the training session.
- * \param[in] options Session options that the user can customize for this training session.
- * \param[in] checkpoint_state Training states that the training session uses as a starting point for training.
- * \param[in] train_model_data Buffer containing the model data to be used to perform training
- * \param[in] train_data_length Length of the buffer containing train_model_data
- * \param[in] eval_model_data Buffer containing the model data to be used to perform evaluation
- * \param[in] eval_data_length Length of the buffer containing eval_model_data
- * \param[in] optim_model_data Buffer containing the model data to be used to perform weight update
- * \param[in] optim_data_length Length of the buffer containing optim_model_data
- * \param[out] out Created training session.
- *
- */
- ORT_API2_STATUS(CreateTrainingSessionFromBuffer, _In_ const OrtEnv* env,
- _In_ const OrtSessionOptions* options, _Inout_ OrtCheckpointState* checkpoint_state,
- _In_ const void* train_model_data, size_t train_data_length,
- _In_ const void* eval_model_data, size_t eval_data_length,
- _In_ const void* optim_model_data, size_t optim_data_length,
- _Outptr_result_maybenull_ OrtTrainingSession** out);
- /// @}
- /// \name Model IO Information
- /// @{
- /** \brief Retrieves the number of user outputs in the training model.
- *
- * This function returns the number of outputs of the training model so that the user can
- * allocate space for the number of outputs when OrtTrainingApi::TrainStep is invoked.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[out] out Number of user outputs in the training model.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetTrainingModelOutputCount, _In_ const OrtTrainingSession* sess, _Out_ size_t* out);
- /** \brief Retrieves the number of user outputs in the eval model.
- *
- * This function returns the number of outputs of the eval model so that the user can
- * allocate space for the number of outputs when OrtTrainingApi::EvalStep is invoked.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[out] out Number of user outputs in the eval model.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetEvalModelOutputCount, _In_ const OrtTrainingSession* sess, _Out_ size_t* out);
- /** \brief Retrieves the names of user outputs in the training model.
- *
- * This function returns the names of outputs of the training model that can be associated with the OrtValue(s)
- * returned by the OrtTrainingApi::TrainStep function.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] index Index of the output name requested.
- * \param[in] allocator Allocator to use to allocate the memory for the name.
- * \param[out] output Name of the training model output at the given index.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetTrainingModelOutputName, _In_ const OrtTrainingSession* sess, size_t index, _Inout_ OrtAllocator* allocator, _Outptr_ char** output);
- /** \brief Retrieves the names of user outputs in the eval model.
- *
- * This function returns the names of outputs of the eval model that can be associated with the OrtValue(s) returned
- * by the OrtTrainingApi::EvalStep function.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] index Index of the output name requested.
- * \param[in] allocator Allocator to use to allocate the memory for the name.
- * \param[out] output Name of the eval model output at the given index.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetEvalModelOutputName, _In_ const OrtTrainingSession* sess, size_t index, _Inout_ OrtAllocator* allocator, _Outptr_ char** output);
- /// @}
- /// \name Implementing The Training Loop
- /// @{
- /** \brief Reset the gradients of all trainable parameters to zero lazily.
- *
- * This function sets the internal state of the training session such that the gradients of the trainable
- * parameters in the OrtCheckpointState will be scheduled to be reset just before the new gradients are
- * computed on the next invocation of the next OrtTrainingApi::TrainStep.
- *
- * \param[in] session The `this` pointer to the training session.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(LazyResetGrad, _Inout_ OrtTrainingSession* session);
- /** \brief Computes the outputs of the training model and the gradients of the trainable parameters for the given inputs
- *
- * This function performs a training step that computes the outputs of the training model and the gradients
- * of the trainable parameters for the given inputs. The train step is performed based on the training model
- * that was provided to the training session.
- * The OrtTrainingApi::TrainStep is equivalent of running forward propagation and backward propagation in a single
- * step.
- * The gradients computed are stored inside the training session state so they can be later consumed
- * by the OrtTrainingApi::OptimizerStep function.
- * The gradients can be lazily reset by invoking the OrtTrainingApi::LazyResetGrad function.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] run_options Run options for this training step.
- * \param[in] inputs_len Number of user inputs to the training model.
- * \param[in] inputs The user inputs to the training model.
- * \param[in] outputs_len Number of user outputs expected from this training step.
- * \param[out] outputs User outputs computed by train step.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainStep, _Inout_ OrtTrainingSession* sess, _In_opt_ const OrtRunOptions* run_options,
- _In_ size_t inputs_len, _In_reads_(inputs_len) const OrtValue* const* inputs,
- _In_ size_t outputs_len, _Inout_updates_all_(outputs_len) OrtValue** outputs);
- /** \brief Computes the outputs for the eval model for the given inputs
- *
- * This function performs an eval step that computes the outputs of the eval model for the given inputs.
- * The eval step is performed based on the eval model that was provided to the training session.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] run_options Run options for this eval step.
- * \param[in] inputs_len Number of user inputs to the eval model.
- * \param[in] inputs The user inputs to the eval model.
- * \param[in] outputs_len Number of user outputs expected from this eval step.
- * \param[out] outputs User outputs computed by eval step.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(EvalStep, _In_ const OrtTrainingSession* sess, _In_opt_ const OrtRunOptions* run_options,
- _In_ size_t inputs_len, _In_reads_(inputs_len) const OrtValue* const* inputs,
- _In_ size_t outputs_len, _Inout_updates_all_(outputs_len) OrtValue** outputs);
- /** \brief Sets the learning rate for this training session.
- *
- * This function allows users to set the learning rate for the training session. The current
- * learning rate is maintained by the training session and can be overwritten by invoking
- * this function with the desired learning rate. This function should not be used when a valid
- * learning rate scheduler is registered. It should be used either to set the learning rate
- * derived from a custom learning rate scheduler or to set a constant learning rate to be used
- * throughout the training session.
- * \note Please note that this function does not set the initial learning rate that may be needed
- * by the predefined learning rate schedulers. To set the initial learning rate for learning
- * rate schedulers, please look at the function OrtTrainingApi::RegisterLinearLRScheduler.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] learning_rate Desired learning rate to be set.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(SetLearningRate, _Inout_ OrtTrainingSession* sess, _In_ float learning_rate);
- /** \brief Gets the current learning rate for this training session.
- *
- * This function allows users to get the learning rate for the training session. The current
- * learning rate is maintained by the training session, and users can query it for the purpose
- * of implementing their own learning rate schedulers.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[out] learning_rate Learning rate currently in use by the training session.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(GetLearningRate, _Inout_ OrtTrainingSession* sess, _Out_ float* learning_rate);
- /** \brief Performs the weight updates for the trainable parameters using the optimizer model.
- *
- * This function performs the weight update step that updates the trainable parameters such that they
- * take a step in the direction of their gradients (gradient descent). The optimizer step is performed
- * based on the optimizer model that was provided to the training session.
- * The updated parameters are stored inside the training state so that they can be used by the next
- * OrtTrainingApi::TrainStep function call.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] run_options Run options for this optimizer step.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(OptimizerStep, _Inout_ OrtTrainingSession* sess,
- _In_opt_ const OrtRunOptions* run_options);
- /** \brief Registers a linear learning rate scheduler for the training session.
- *
- * Register a linear learning rate scheduler that decays the learning rate by linearly updated
- * multiplicative factor from the initial learning rate set on the training session to 0. The decay
- * is performed after the initial warm up phase where the learning rate is linearly incremented
- * from 0 to the initial learning rate provided.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] warmup_step_count Warmup steps for LR warmup.
- * \param[in] total_step_count Total step count.
- * \param[in] initial_lr The initial learning rate to be used by the training session.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(RegisterLinearLRScheduler, _Inout_ OrtTrainingSession* sess, _In_ const int64_t warmup_step_count,
- _In_ const int64_t total_step_count, _In_ const float initial_lr);
- /** \brief Update the learning rate based on the registered learing rate scheduler.
- *
- * Takes a scheduler step that updates the learning rate that is being used by the training session.
- * This function should typically be called before invoking the optimizer step for each round,
- * or as determined necessary to update the learning rate being used by the training session.
- * \note Please note that a valid predefined learning rate scheduler must be first registered to invoke this
- * function.
- *
- * \param[in] sess The `this` pointer to the training session.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(SchedulerStep, _Inout_ OrtTrainingSession* sess);
- /// @}
- /// \name Accessing The Training Session State
- /// @{
- /** \brief Retrieves the size of all the parameters.
- *
- * Calculates the total number of primitive (datatype of the parameters) elements of all the parameters in the
- * training state.
- * When trainable_only argument is true, the size is calculated for trainable params only.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[out] out Size of all parameter elements.
- * \param[in] trainable_only Whether to skip non-trainable parameters
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(GetParametersSize, _Inout_ OrtTrainingSession* sess, _Out_ size_t* out, bool trainable_only);
- /** \brief Copy all parameters to a contiguous buffer held by the argument parameters_buffer
- *
- * The parameters_buffer has to be of the size given by GetParametersSize api call,
- * with matching setting for the argument trainable_only. All the target parameters must be of the same
- * datatype. The OrtValue must be pre-allocated onto
- * the desired device. This is a complementary function to OrtTrainingApi::CopyBufferToParameters.
- * Parameter ordering is preserved.
- * User is responsible for allocating and freeing the resources used by the parameters_buffer.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] trainable_only Whether to skip non-trainable parameters
- * \param[out] parameters_buffer The pre-allocated OrtValue buffer to copy onto.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(CopyParametersToBuffer, _Inout_ OrtTrainingSession* sess,
- _Inout_ OrtValue* parameters_buffer, bool trainable_only);
- /** \brief Copy parameter values from the given contiguous buffer held by parameters_buffer to the training state
- *
- * The parameters_buffer argument has to be of the size given by OrtTrainingApi::GetParametersSize api call,
- * with matching setting for trainable_only argument. All the target parameters must be of the same
- * datatype. This is a complementary function to OrtTrainingApi::CopyParametersToBuffer
- * and can be used to load updated buffer values onto the training state.
- * Parameter ordering is preserved.
- * User is responsible for allocating and freeing the resources used by the parameters_buffer.
- * In case the training session was created with a nominal checkpoint, invoking this function is required
- * to load the updated parameters onto the checkpoint to complete it.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] trainable_only Whether to skip non-trainable parameters
- * \param[out] parameters_buffer The pre-allocated OrtValue buffer to copy from.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(CopyBufferToParameters, _Inout_ OrtTrainingSession* sess,
- _Inout_ OrtValue* parameters_buffer, bool trainable_only);
- /// @}
- /// \name Release Training Resources
- /// @{
- /** \brief Frees up the memory used up by the training session.
- *
- * This function frees up any memory that was allocated in the training session. The training
- * session can no longer be used after this call.
- *
- */
- ORT_CLASS_RELEASE(TrainingSession);
- /** \brief Frees up the memory used up by the checkpoint state.
- *
- * This function frees up any memory that was allocated in the checkpoint state. The checkpoint
- * state can no longer be used after this call.
- * \note Note that the checkpoint state must be released only after the training session has been released.
- *
- */
- ORT_CLASS_RELEASE(CheckpointState);
- /// @}
- /// \name Prepare For Inferencing
- /// @{
- /** \brief Export a model that can be used for inferencing.
- *
- * If the training session was provided with an eval model, the training session can generate
- * an inference model if it knows the inference graph outputs. The input inference graph outputs
- * are used to prune the eval model so that the inference model's outputs align with the provided outputs.
- * The exported model is saved at the path provided and can be used for inferencing with InferenceSession.
- * \note Note that the function re-loads the eval model from the path provided to OrtTrainingApi::CreateTrainingSession
- * and expects that this path still be valid.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] inference_model_path Path where the inference model should be serialized to.
- * \param[in] graph_outputs_len Size of the graph output names array.
- * \param[in] graph_output_names Names of the outputs that are needed in the inference model.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(ExportModelForInferencing, _Inout_ OrtTrainingSession* sess,
- _In_ const ORTCHAR_T* inference_model_path, size_t graph_outputs_len,
- _In_reads_(graph_outputs_len) const char* const* graph_output_names);
- /// @}
- /// \name Training Utilities
- /// @{
- /** \brief Sets the seed used for random number generation in Onnxruntime.
- *
- * Use this function to generate reproducible results. It should be noted that completely reproducible
- * results are not guaranteed.
- *
- * \param[in] seed The seed to be set.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(SetSeed, _In_ const int64_t seed);
- /// @}
- /// \name Model IO Information
- /// @{
- /** \brief Retrieves the number of user inputs in the training model.
- *
- * This function returns the number of inputs of the training model so that the user can accordingly
- * allocate the OrtValue(s) provided to the OrtTrainingApi::TrainStep function.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[out] out Number of user inputs in the training model.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetTrainingModelInputCount, _In_ const OrtTrainingSession* sess, _Out_ size_t* out);
- /** \brief Retrieves the number of user inputs in the eval model.
- *
- * This function returns the number of inputs of the eval model so that the user can accordingly
- * allocate the OrtValue(s) provided to the OrtTrainingApi::EvalStep function.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[out] out Number of user inputs in the eval model.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetEvalModelInputCount, _In_ const OrtTrainingSession* sess, _Out_ size_t* out);
- /** \brief Retrieves the name of the user input at given index in the training model.
- *
- * This function returns the names of inputs of the training model that can be associated with the
- * OrtValue(s) provided to the OrtTrainingApi::TrainStep function.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] index The index of the training model input name requested.
- * \param[in] allocator The allocator to use to allocate the memory for the requested name.
- * \param[out] output Name of the user input for the training model at the given index.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetTrainingModelInputName, _In_ const OrtTrainingSession* sess, size_t index,
- _In_ OrtAllocator* allocator, _Outptr_ char** output);
- /** \brief Retrieves the name of the user input at given index in the eval model.
- *
- * This function returns the names of inputs of the eval model that can be associated with the OrtValue(s) provided
- * to the OrtTrainingApi::EvalStep function.
- *
- * \param[in] sess The `this` pointer to the training session.
- * \param[in] index The index of the eval model input name requested.
- * \param[in] allocator The allocator to use to allocate the memory for the requested name.
- * \param[out] output Name of the user input for the eval model at the given index.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(TrainingSessionGetEvalModelInputName, _In_ const OrtTrainingSession* sess, size_t index,
- _In_ OrtAllocator* allocator, _Outptr_ char** output);
- /// @}
- /// \name Accessing The Training Session State
- /// @{
- /** \brief Adds or updates the given property to/in the checkpoint state.
- *
- * Runtime properties such as epoch, training step, best score, and others can be added to the checkpoint
- * state by the user by calling this function with the corresponding property name and value.
- * The given property name must be unique to be able to successfully add the property.
- *
- * \param[in] checkpoint_state The checkpoint state which should hold the property.
- * \param[in] property_name Name of the property being added or updated.
- * \param[in] property_type Type of the property associated with the given name.
- * \param[in] property_value Property value associated with the given name.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(AddProperty, _Inout_ OrtCheckpointState* checkpoint_state,
- _In_ const char* property_name, _In_ enum OrtPropertyType property_type,
- _In_ void* property_value);
- /** \brief Gets the property value associated with the given name from the checkpoint state.
- *
- * Gets the property value from an existing entry in the checkpoint state. The property must
- * exist in the checkpoint state to be able to retrieve it successfully.
- *
- * \param[in] checkpoint_state The checkpoint state that is currently holding the property.
- * \param[in] property_name Name of the property being retrieved.
- * \param[in] allocator Allocator used to allocate the memory for the property_value.
- * \param[out] property_type Type of the property associated with the given name.
- * \param[out] property_value Property value associated with the given name.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(GetProperty, _In_ const OrtCheckpointState* checkpoint_state,
- _In_ const char* property_name, _Inout_ OrtAllocator* allocator,
- _Out_ enum OrtPropertyType* property_type, _Outptr_ void** property_value);
- /// @}
- /// \name Accessing The Training Session State
- /// @{
- /** \brief Load a checkpoint state from a buffer into checkpoint_state.
- *
- * This function will parse a checkpoint bytes buffer, pull relevant data and load the training
- * state into the checkpoint_state. This checkpoint state can then be used to create the
- * training session by invoking OrtTrainingApi::CreateTrainingSession. By doing so, the training
- * session will resume training from the given checkpoint state.
- * \note Note that the training session created with a checkpoint state uses this state to store the entire
- * training state (including model parameters, its gradients, the optimizer states and the properties).
- * As a result, it is required that the checkpoint state outlive the lifetime of the training session.
- *
- * \param[in] checkpoint_buffer Path to the checkpoint bytes buffer.
- * \param[in] num_bytes Number of bytes in the checkpoint buffer.
- * \param[out] checkpoint_state Checkpoint state that contains the states of the training session.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(LoadCheckpointFromBuffer, _In_ const void* checkpoint_buffer,
- _In_ const size_t num_bytes, _Outptr_ OrtCheckpointState** checkpoint_state);
- /** \brief Retrieves the type and shape information of the parameter associated with the given parameter name.
- *
- * This function retrieves the type and shape of the parameter associated with the given parameter name.
- * The parameter must exist in the checkpoint state to be able to retrieve its type and shape information successfully.
- *
- * \param[in] checkpoint_state The checkpoint state.
- * \param[in] parameter_name Name of the parameter being retrieved.
- * \param[out] parameter_type_and_shape The type and shape of the parameter being retrieved.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(GetParameterTypeAndShape, _In_ const OrtCheckpointState* checkpoint_state,
- _In_ const char* parameter_name, _Outptr_ OrtTensorTypeAndShapeInfo** parameter_type_and_shape);
- /** \brief Updates the data associated with the model parameter in the checkpoint state for the given parameter name.
- *
- * This function updates a model parameter in the checkpoint state with the given parameter data.
- * The training session must be already created with the checkpoint state that contains the parameter
- * being updated. The given parameter is copied over to the registered device for the training session.
- * The parameter must exist in the checkpoint state to be able to update it successfully.
- *
- * \param[in] checkpoint_state The checkpoint state.
- * \param[in] parameter_name Name of the parameter being updated.
- * \param[in] parameter The parameter data that should replace the existing parameter data.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(UpdateParameter, _Inout_ OrtCheckpointState* checkpoint_state,
- _In_ const char* parameter_name, _In_ OrtValue* parameter);
- /** \brief Gets the data associated with the model parameter from the checkpoint state for the given parameter name.
- *
- * This function retrieves the model parameter data from the checkpoint state for the given parameter name.
- * The parameter is copied over and returned as an OrtValue. The training session must be already created
- * with the checkpoint state that contains the parameter being retrieved.
- * The parameter must exist in the checkpoint state to be able to retrieve it successfully.
- *
- * \param[in] checkpoint_state The checkpoint state.
- * \param[in] parameter_name Name of the parameter being retrieved.
- * \param[in] allocator Allocator used to allocate the memory for the parameter.
- * \param[out] parameter The parameter data that is retrieved from the checkpoint state.
- *
- * \snippet{doc} snippets.dox OrtStatus Return Value
- *
- */
- ORT_API2_STATUS(GetParameter, _In_ const OrtCheckpointState* checkpoint_state,
- _In_ const char* parameter_name, _Inout_ OrtAllocator* allocator,
- _Outptr_ OrtValue** parameter);
- /// @}
- };
- typedef struct OrtTrainingApi OrtTrainingApi;
- /// @}
|