123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html
- #ifndef OPENCV_OBJDETECT_ARUCO_DETECTOR_HPP
- #define OPENCV_OBJDETECT_ARUCO_DETECTOR_HPP
- #include <opencv2/objdetect/aruco_dictionary.hpp>
- #include <opencv2/objdetect/aruco_board.hpp>
- namespace cv {
- namespace aruco {
- //! @addtogroup objdetect_aruco
- //! @{
- enum CornerRefineMethod{
- CORNER_REFINE_NONE, ///< Tag and corners detection based on the ArUco approach
- CORNER_REFINE_SUBPIX, ///< ArUco approach and refine the corners locations using corner subpixel accuracy
- CORNER_REFINE_CONTOUR, ///< ArUco approach and refine the corners locations using the contour-points line fitting
- CORNER_REFINE_APRILTAG, ///< Tag and corners detection based on the AprilTag 2 approach @cite wang2016iros
- };
- /** @brief struct DetectorParameters is used by ArucoDetector
- */
- struct CV_EXPORTS_W_SIMPLE DetectorParameters {
- CV_WRAP DetectorParameters() {
- adaptiveThreshWinSizeMin = 3;
- adaptiveThreshWinSizeMax = 23;
- adaptiveThreshWinSizeStep = 10;
- adaptiveThreshConstant = 7;
- minMarkerPerimeterRate = 0.03;
- maxMarkerPerimeterRate = 4.;
- polygonalApproxAccuracyRate = 0.03;
- minCornerDistanceRate = 0.05;
- minDistanceToBorder = 3;
- minMarkerDistanceRate = 0.125;
- cornerRefinementMethod = (int)CORNER_REFINE_NONE;
- cornerRefinementWinSize = 5;
- relativeCornerRefinmentWinSize = 0.3f;
- cornerRefinementMaxIterations = 30;
- cornerRefinementMinAccuracy = 0.1;
- markerBorderBits = 1;
- perspectiveRemovePixelPerCell = 4;
- perspectiveRemoveIgnoredMarginPerCell = 0.13;
- maxErroneousBitsInBorderRate = 0.35;
- minOtsuStdDev = 5.0;
- errorCorrectionRate = 0.6;
- aprilTagQuadDecimate = 0.0;
- aprilTagQuadSigma = 0.0;
- aprilTagMinClusterPixels = 5;
- aprilTagMaxNmaxima = 10;
- aprilTagCriticalRad = (float)(10* CV_PI /180);
- aprilTagMaxLineFitMse = 10.0;
- aprilTagMinWhiteBlackDiff = 5;
- aprilTagDeglitch = 0;
- detectInvertedMarker = false;
- useAruco3Detection = false;
- minSideLengthCanonicalImg = 32;
- minMarkerLengthRatioOriginalImg = 0.0;
- }
- /** @brief Read a new set of DetectorParameters from FileNode (use FileStorage.root()).
- */
- CV_WRAP bool readDetectorParameters(const FileNode& fn);
- /** @brief Write a set of DetectorParameters to FileStorage
- */
- CV_WRAP bool writeDetectorParameters(FileStorage& fs, const String& name = String());
- /// minimum window size for adaptive thresholding before finding contours (default 3).
- CV_PROP_RW int adaptiveThreshWinSizeMin;
- /// maximum window size for adaptive thresholding before finding contours (default 23).
- CV_PROP_RW int adaptiveThreshWinSizeMax;
- /// increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax during the thresholding (default 10).
- CV_PROP_RW int adaptiveThreshWinSizeStep;
- /// constant for adaptive thresholding before finding contours (default 7)
- CV_PROP_RW double adaptiveThreshConstant;
- /** @brief determine minimum perimeter for marker contour to be detected.
- *
- * This is defined as a rate respect to the maximum dimension of the input image (default 0.03).
- */
- CV_PROP_RW double minMarkerPerimeterRate;
- /** @brief determine maximum perimeter for marker contour to be detected.
- *
- * This is defined as a rate respect to the maximum dimension of the input image (default 4.0).
- */
- CV_PROP_RW double maxMarkerPerimeterRate;
- /// minimum accuracy during the polygonal approximation process to determine which contours are squares. (default 0.03)
- CV_PROP_RW double polygonalApproxAccuracyRate;
- /// minimum distance between corners for detected markers relative to its perimeter (default 0.05)
- CV_PROP_RW double minCornerDistanceRate;
- /// minimum distance of any corner to the image border for detected markers (in pixels) (default 3)
- CV_PROP_RW int minDistanceToBorder;
- /** @brief minimum average distance between the corners of the two markers to be grouped (default 0.125).
- *
- * The rate is relative to the smaller perimeter of the two markers.
- * Two markers are grouped if average distance between the corners of the two markers is less than
- * min(MarkerPerimeter1, MarkerPerimeter2)*minMarkerDistanceRate.
- *
- * default value is 0.125 because 0.125*MarkerPerimeter = (MarkerPerimeter / 4) * 0.5 = half the side of the marker.
- *
- * @note default value was changed from 0.05 after 4.8.1 release, because the filtering algorithm has been changed.
- * Now a few candidates from the same group can be added to the list of candidates if they are far from each other.
- * @sa minGroupDistance.
- */
- CV_PROP_RW double minMarkerDistanceRate;
- /** @brief minimum average distance between the corners of the two markers in group to add them to the list of candidates
- *
- * The average distance between the corners of the two markers is calculated relative to its module size (default 0.21).
- */
- CV_PROP_RW float minGroupDistance = 0.21f;
- /** @brief default value CORNER_REFINE_NONE */
- CV_PROP_RW int cornerRefinementMethod;
- /** @brief maximum window size for the corner refinement process (in pixels) (default 5).
- *
- * The window size may decrease if the ArUco marker is too small, check relativeCornerRefinmentWinSize.
- * The final window size is calculated as:
- * min(cornerRefinementWinSize, averageArucoModuleSize*relativeCornerRefinmentWinSize),
- * where averageArucoModuleSize is average module size of ArUco marker in pixels.
- * (ArUco marker is composed of black and white modules)
- */
- CV_PROP_RW int cornerRefinementWinSize;
- /** @brief Dynamic window size for corner refinement relative to Aruco module size (default 0.3).
- *
- * The final window size is calculated as:
- * min(cornerRefinementWinSize, averageArucoModuleSize*relativeCornerRefinmentWinSize),
- * where averageArucoModuleSize is average module size of ArUco marker in pixels.
- * (ArUco marker is composed of black and white modules)
- * In the case of markers located far from each other, it may be useful to increase the value of the parameter to 0.4-0.5.
- * In the case of markers located close to each other, it may be useful to decrease the parameter value to 0.1-0.2.
- */
- CV_PROP_RW float relativeCornerRefinmentWinSize;
- /// maximum number of iterations for stop criteria of the corner refinement process (default 30).
- CV_PROP_RW int cornerRefinementMaxIterations;
- /// minimum error for the stop cristeria of the corner refinement process (default: 0.1)
- CV_PROP_RW double cornerRefinementMinAccuracy;
- /// number of bits of the marker border, i.e. marker border width (default 1).
- CV_PROP_RW int markerBorderBits;
- /// number of bits (per dimension) for each cell of the marker when removing the perspective (default 4).
- CV_PROP_RW int perspectiveRemovePixelPerCell;
- /** @brief width of the margin of pixels on each cell not considered for the determination of the cell bit.
- *
- * Represents the rate respect to the total size of the cell, i.e. perspectiveRemovePixelPerCell (default 0.13)
- */
- CV_PROP_RW double perspectiveRemoveIgnoredMarginPerCell;
- /** @brief maximum number of accepted erroneous bits in the border (i.e. number of allowed white bits in the border).
- *
- * Represented as a rate respect to the total number of bits per marker (default 0.35).
- */
- CV_PROP_RW double maxErroneousBitsInBorderRate;
- /** @brief minimun standard deviation in pixels values during the decodification step to apply Otsu
- * thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher than 128 or not) (default 5.0)
- */
- CV_PROP_RW double minOtsuStdDev;
- /// error correction rate respect to the maximun error correction capability for each dictionary (default 0.6).
- CV_PROP_RW double errorCorrectionRate;
- /** @brief April :: User-configurable parameters.
- *
- * Detection of quads can be done on a lower-resolution image, improving speed at a cost of
- * pose accuracy and a slight decrease in detection rate. Decoding the binary payload is still
- */
- CV_PROP_RW float aprilTagQuadDecimate;
- /// what Gaussian blur should be applied to the segmented image (used for quad detection?)
- CV_PROP_RW float aprilTagQuadSigma;
- // April :: Internal variables
- /// reject quads containing too few pixels (default 5).
- CV_PROP_RW int aprilTagMinClusterPixels;
- /// how many corner candidates to consider when segmenting a group of pixels into a quad (default 10).
- CV_PROP_RW int aprilTagMaxNmaxima;
- /** @brief reject quads where pairs of edges have angles that are close to straight or close to 180 degrees.
- *
- * Zero means that no quads are rejected. (In radians) (default 10*PI/180)
- */
- CV_PROP_RW float aprilTagCriticalRad;
- /// when fitting lines to the contours, what is the maximum mean squared error
- CV_PROP_RW float aprilTagMaxLineFitMse;
- /** @brief add an extra check that the white model must be (overall) brighter than the black model.
- *
- * When we build our model of black & white pixels, we add an extra check that the white model must be (overall)
- * brighter than the black model. How much brighter? (in pixel values, [0,255]), (default 5)
- */
- CV_PROP_RW int aprilTagMinWhiteBlackDiff;
- /// should the thresholded image be deglitched? Only useful for very noisy images (default 0).
- CV_PROP_RW int aprilTagDeglitch;
- /** @brief to check if there is a white marker.
- *
- * In order to generate a "white" marker just invert a normal marker by using a tilde, ~markerImage. (default false)
- */
- CV_PROP_RW bool detectInvertedMarker;
- /** @brief enable the new and faster Aruco detection strategy.
- *
- * Proposed in the paper:
- * Romero-Ramirez et al: Speeded up detection of squared fiducial markers (2018)
- * https://www.researchgate.net/publication/325787310_Speeded_Up_Detection_of_Squared_Fiducial_Markers
- */
- CV_PROP_RW bool useAruco3Detection;
- /// minimum side length of a marker in the canonical image. Latter is the binarized image in which contours are searched.
- CV_PROP_RW int minSideLengthCanonicalImg;
- /// range [0,1], eq (2) from paper. The parameter tau_i has a direct influence on the processing speed.
- CV_PROP_RW float minMarkerLengthRatioOriginalImg;
- };
- /** @brief struct RefineParameters is used by ArucoDetector
- */
- struct CV_EXPORTS_W_SIMPLE RefineParameters {
- CV_WRAP RefineParameters(float minRepDistance = 10.f, float errorCorrectionRate = 3.f, bool checkAllOrders = true);
- /** @brief Read a new set of RefineParameters from FileNode (use FileStorage.root()).
- */
- CV_WRAP bool readRefineParameters(const FileNode& fn);
- /** @brief Write a set of RefineParameters to FileStorage
- */
- CV_WRAP bool writeRefineParameters(FileStorage& fs, const String& name = String());
- /** @brief minRepDistance minimum distance between the corners of the rejected candidate and the reprojected marker
- in order to consider it as a correspondence.
- */
- CV_PROP_RW float minRepDistance;
- /** @brief errorCorrectionRate rate of allowed erroneous bits respect to the error correction capability of the used dictionary.
- *
- * -1 ignores the error correction step.
- */
- CV_PROP_RW float errorCorrectionRate;
- /** @brief checkAllOrders consider the four posible corner orders in the rejectedCorners array.
- *
- * If it set to false, only the provided corner order is considered (default true).
- */
- CV_PROP_RW bool checkAllOrders;
- };
- /** @brief The main functionality of ArucoDetector class is detection of markers in an image with detectMarkers() method.
- *
- * After detecting some markers in the image, you can try to find undetected markers from this dictionary with
- * refineDetectedMarkers() method.
- *
- * @see DetectorParameters, RefineParameters
- */
- class CV_EXPORTS_W ArucoDetector : public Algorithm
- {
- public:
- /** @brief Basic ArucoDetector constructor
- *
- * @param dictionary indicates the type of markers that will be searched
- * @param detectorParams marker detection parameters
- * @param refineParams marker refine detection parameters
- */
- CV_WRAP ArucoDetector(const Dictionary &dictionary = getPredefinedDictionary(cv::aruco::DICT_4X4_50),
- const DetectorParameters &detectorParams = DetectorParameters(),
- const RefineParameters& refineParams = RefineParameters());
- /** @brief Basic marker detection
- *
- * @param image input image
- * @param corners vector of detected marker corners. For each marker, its four corners
- * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
- * the dimensions of this array is Nx4. The order of the corners is clockwise.
- * @param ids vector of identifiers of the detected markers. The identifier is of type int
- * (e.g. std::vector<int>). For N detected markers, the size of ids is also N.
- * The identifiers have the same order than the markers in the imgPoints array.
- * @param rejectedImgPoints contains the imgPoints of those squares whose inner code has not a
- * correct codification. Useful for debugging purposes.
- *
- * Performs marker detection in the input image. Only markers included in the specific dictionary
- * are searched. For each detected marker, it returns the 2D position of its corner in the image
- * and its corresponding identifier.
- * Note that this function does not perform pose estimation.
- * @note The function does not correct lens distortion or takes it into account. It's recommended to undistort
- * input image with corresponding camera model, if camera parameters are known
- * @sa undistort, estimatePoseSingleMarkers, estimatePoseBoard
- */
- CV_WRAP void detectMarkers(InputArray image, OutputArrayOfArrays corners, OutputArray ids,
- OutputArrayOfArrays rejectedImgPoints = noArray()) const;
- /** @brief Refine not detected markers based on the already detected and the board layout
- *
- * @param image input image
- * @param board layout of markers in the board.
- * @param detectedCorners vector of already detected marker corners.
- * @param detectedIds vector of already detected marker identifiers.
- * @param rejectedCorners vector of rejected candidates during the marker detection process.
- * @param cameraMatrix optional input 3x3 floating-point camera matrix
- * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
- * @param distCoeffs optional vector of distortion coefficients
- * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
- * @param recoveredIdxs Optional array to returns the indexes of the recovered candidates in the
- * original rejectedCorners array.
- *
- * This function tries to find markers that were not detected in the basic detecMarkers function.
- * First, based on the current detected marker and the board layout, the function interpolates
- * the position of the missing markers. Then it tries to find correspondence between the reprojected
- * markers and the rejected candidates based on the minRepDistance and errorCorrectionRate parameters.
- * If camera parameters and distortion coefficients are provided, missing markers are reprojected
- * using projectPoint function. If not, missing marker projections are interpolated using global
- * homography, and all the marker corners in the board must have the same Z coordinate.
- */
- CV_WRAP void refineDetectedMarkers(InputArray image, const Board &board,
- InputOutputArrayOfArrays detectedCorners,
- InputOutputArray detectedIds, InputOutputArrayOfArrays rejectedCorners,
- InputArray cameraMatrix = noArray(), InputArray distCoeffs = noArray(),
- OutputArray recoveredIdxs = noArray()) const;
- CV_WRAP const Dictionary& getDictionary() const;
- CV_WRAP void setDictionary(const Dictionary& dictionary);
- CV_WRAP const DetectorParameters& getDetectorParameters() const;
- CV_WRAP void setDetectorParameters(const DetectorParameters& detectorParameters);
- CV_WRAP const RefineParameters& getRefineParameters() const;
- CV_WRAP void setRefineParameters(const RefineParameters& refineParameters);
- /** @brief Stores algorithm parameters in a file storage
- */
- virtual void write(FileStorage& fs) const override;
- /** @brief simplified API for language bindings
- */
- CV_WRAP inline void write(FileStorage& fs, const String& name) { Algorithm::write(fs, name); }
- /** @brief Reads algorithm parameters from a file storage
- */
- CV_WRAP virtual void read(const FileNode& fn) override;
- protected:
- struct ArucoDetectorImpl;
- Ptr<ArucoDetectorImpl> arucoDetectorImpl;
- };
- /** @brief Draw detected markers in image
- *
- * @param image input/output image. It must have 1 or 3 channels. The number of channels is not altered.
- * @param corners positions of marker corners on input image.
- * (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the dimensions of
- * this array should be Nx4. The order of the corners should be clockwise.
- * @param ids vector of identifiers for markers in markersCorners .
- * Optional, if not provided, ids are not painted.
- * @param borderColor color of marker borders. Rest of colors (text color and first corner color)
- * are calculated based on this one to improve visualization.
- *
- * Given an array of detected marker corners and its corresponding ids, this functions draws
- * the markers in the image. The marker borders are painted and the markers identifiers if provided.
- * Useful for debugging purposes.
- */
- CV_EXPORTS_W void drawDetectedMarkers(InputOutputArray image, InputArrayOfArrays corners,
- InputArray ids = noArray(), Scalar borderColor = Scalar(0, 255, 0));
- /** @brief Generate a canonical marker image
- *
- * @param dictionary dictionary of markers indicating the type of markers
- * @param id identifier of the marker that will be returned. It has to be a valid id in the specified dictionary.
- * @param sidePixels size of the image in pixels
- * @param img output image with the marker
- * @param borderBits width of the marker border.
- *
- * This function returns a marker image in its canonical form (i.e. ready to be printed)
- */
- CV_EXPORTS_W void generateImageMarker(const Dictionary &dictionary, int id, int sidePixels, OutputArray img,
- int borderBits = 1);
- //! @}
- }
- }
- #endif
|