123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // Author: Liangqian Kong <kongliangqian@huawei.com>
- // Longbu Wang <wanglongbu@huawei.com>
- #ifndef OPENCV_CORE_DUALQUATERNION_HPP
- #define OPENCV_CORE_DUALQUATERNION_HPP
- #include <opencv2/core/quaternion.hpp>
- #include <opencv2/core/affine.hpp>
- namespace cv{
- //! @addtogroup core
- //! @{
- template <typename _Tp> class DualQuat;
- template <typename _Tp> std::ostream& operator<<(std::ostream&, const DualQuat<_Tp>&);
- /**
- * Dual quaternions were introduced to describe rotation together with translation while ordinary
- * quaternions can only describe rotation. It can be used for shortest path pose interpolation,
- * local pose optimization or volumetric deformation. More details can be found
- * - https://en.wikipedia.org/wiki/Dual_quaternion
- * - ["A beginners guide to dual-quaternions: what they are, how they work, and how to use them for 3D character hierarchies", Ben Kenwright, 2012](https://borodust.org/public/shared/beginner_dual_quats.pdf)
- * - ["Dual Quaternions", Yan-Bin Jia, 2013](http://web.cs.iastate.edu/~cs577/handouts/dual-quaternion.pdf)
- * - ["Geometric Skinning with Approximate Dual Quaternion Blending", Kavan, 2008](https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric)
- * - http://rodolphe-vaillant.fr/?e=29
- *
- * A unit dual quaternion can be classically represented as:
- * \f[
- * \begin{equation}
- * \begin{split}
- * \sigma &= \left(r+\frac{\epsilon}{2}tr\right)\\
- * &= [w, x, y, z, w\_, x\_, y\_, z\_]
- * \end{split}
- * \end{equation}
- * \f]
- * where \f$r, t\f$ represents the rotation (ordinary unit quaternion) and translation (pure ordinary quaternion) respectively.
- *
- * A general dual quaternions which consist of two quaternions is usually represented in form of:
- * \f[
- * \sigma = p + \epsilon q
- * \f]
- * where the introduced dual unit \f$\epsilon\f$ satisfies \f$\epsilon^2 = \epsilon^3 =...=0\f$, and \f$p, q\f$ are quaternions.
- *
- * Alternatively, dual quaternions can also be interpreted as four components which are all [dual numbers](https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric):
- * \f[
- * \sigma = \hat{q}_w + \hat{q}_xi + \hat{q}_yj + \hat{q}_zk
- * \f]
- * If we set \f$\hat{q}_x, \hat{q}_y\f$ and \f$\hat{q}_z\f$ equal to 0, a dual quaternion is transformed to a dual number. see normalize().
- *
- * If you want to create a dual quaternion, you can use:
- *
- * ```
- * using namespace cv;
- * double angle = CV_PI;
- *
- * // create from eight number
- * DualQuatd dq1(1, 2, 3, 4, 5, 6, 7, 8); //p = [1,2,3,4]. q=[5,6,7,8]
- *
- * // create from Vec
- * Vec<double, 8> v{1,2,3,4,5,6,7,8};
- * DualQuatd dq_v{v};
- *
- * // create from two quaternion
- * Quatd p(1, 2, 3, 4);
- * Quatd q(5, 6, 7, 8);
- * DualQuatd dq2 = DualQuatd::createFromQuat(p, q);
- *
- * // create from an angle, an axis and a translation
- * Vec3d axis{0, 0, 1};
- * Vec3d trans{3, 4, 5};
- * DualQuatd dq3 = DualQuatd::createFromAngleAxisTrans(angle, axis, trans);
- *
- * // If you already have an instance of class Affine3, then you can use
- * Affine3d R = dq3.toAffine3();
- * DualQuatd dq4 = DualQuatd::createFromAffine3(R);
- *
- * // or create directly by affine transformation matrix Rt
- * // see createFromMat() in detail for the form of Rt
- * Matx44d Rt = dq3.toMat();
- * DualQuatd dq5 = DualQuatd::createFromMat(Rt);
- *
- * // Any rotation + translation movement can
- * // be expressed as a rotation + translation around the same line in space (expressed by Plucker
- * // coords), and here's a way to represent it this way.
- * Vec3d axis{1, 1, 1}; // axis will be normalized in createFromPitch
- * Vec3d trans{3, 4 ,5};
- * axis = axis / std::sqrt(axis.dot(axis));// The formula for computing moment that I use below requires a normalized axis
- * Vec3d moment = 1.0 / 2 * (trans.cross(axis) + axis.cross(trans.cross(axis)) *
- * std::cos(rotation_angle / 2) / std::sin(rotation_angle / 2));
- * double d = trans.dot(qaxis);
- * DualQuatd dq6 = DualQuatd::createFromPitch(angle, d, axis, moment);
- * ```
- *
- * A point \f$v=(x, y, z)\f$ in form of dual quaternion is \f$[1+\epsilon v]=[1,0,0,0,0,x,y,z]\f$.
- * The transformation of a point \f$v_1\f$ to another point \f$v_2\f$ under the dual quaternion \f$\sigma\f$ is
- * \f[
- * 1 + \epsilon v_2 = \sigma * (1 + \epsilon v_1) * \sigma^{\star}
- * \f]
- * where \f$\sigma^{\star}=p^*-\epsilon q^*.\f$
- *
- * A line in the \f$Pl\ddot{u}cker\f$ coordinates \f$(\hat{l}, m)\f$ defined by the dual quaternion \f$l=\hat{l}+\epsilon m\f$.
- * To transform a line, \f[l_2 = \sigma * l_1 * \sigma^*,\f] where \f$\sigma=r+\frac{\epsilon}{2}rt\f$ and
- * \f$\sigma^*=p^*+\epsilon q^*\f$.
- *
- * To extract the Vec<double, 8> or Vec<float, 8>, see toVec();
- *
- * To extract the affine transformation matrix, see toMat();
- *
- * To extract the instance of Affine3, see toAffine3();
- *
- * If two quaternions \f$q_0, q_1\f$ are needed to be interpolated, you can use sclerp()
- * ```
- * DualQuatd::sclerp(q0, q1, t)
- * ```
- * or dqblend().
- * ```
- * DualQuatd::dqblend(q0, q1, t)
- * ```
- * With more than two dual quaternions to be blended, you can use generalize linear dual quaternion blending
- * with the corresponding weights, i.e. gdqblend().
- *
- */
- template <typename _Tp>
- class CV_EXPORTS DualQuat{
- static_assert(std::is_floating_point<_Tp>::value, "Dual quaternion only make sense with type of float or double");
- using value_type = _Tp;
- public:
- static constexpr _Tp CV_DUAL_QUAT_EPS = (_Tp)1.e-6;
- DualQuat();
- /**
- * @brief create from eight same type numbers.
- */
- DualQuat(const _Tp w, const _Tp x, const _Tp y, const _Tp z, const _Tp w_, const _Tp x_, const _Tp y_, const _Tp z_);
- /**
- * @brief create from a double or float vector.
- */
- DualQuat(const Vec<_Tp, 8> &q);
- _Tp w, x, y, z, w_, x_, y_, z_;
- /**
- * @brief create Dual Quaternion from two same type quaternions p and q.
- * A Dual Quaternion \f$\sigma\f$ has the form:
- * \f[\sigma = p + \epsilon q\f]
- * where p and q are defined as follows:
- * \f[\begin{equation}
- * \begin{split}
- * p &= w + x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}\\
- * q &= w\_ + x\_\boldsymbol{i} + y\_\boldsymbol{j} + z\_\boldsymbol{k}.
- * \end{split}
- * \end{equation}
- * \f]
- * The p and q are the real part and dual part respectively.
- * @param realPart a quaternion, real part of dual quaternion.
- * @param dualPart a quaternion, dual part of dual quaternion.
- * @sa Quat
- */
- static DualQuat<_Tp> createFromQuat(const Quat<_Tp> &realPart, const Quat<_Tp> &dualPart);
- /**
- * @brief create a dual quaternion from a rotation angle \f$\theta\f$, a rotation axis
- * \f$\boldsymbol{u}\f$ and a translation \f$\boldsymbol{t}\f$.
- * It generates a dual quaternion \f$\sigma\f$ in the form of
- * \f[\begin{equation}
- * \begin{split}
- * \sigma &= r + \frac{\epsilon}{2}\boldsymbol{t}r \\
- * &= [\cos(\frac{\theta}{2}), \boldsymbol{u}\sin(\frac{\theta}{2})]
- * + \frac{\epsilon}{2}[0, \boldsymbol{t}][[\cos(\frac{\theta}{2}),
- * \boldsymbol{u}\sin(\frac{\theta}{2})]]\\
- * &= \cos(\frac{\theta}{2}) + \boldsymbol{u}\sin(\frac{\theta}{2})
- * + \frac{\epsilon}{2}(-(\boldsymbol{t} \cdot \boldsymbol{u})\sin(\frac{\theta}{2})
- * + \boldsymbol{t}\cos(\frac{\theta}{2}) + \boldsymbol{u} \times \boldsymbol{t} \sin(\frac{\theta}{2})).
- * \end{split}
- * \end{equation}\f]
- * @param angle rotation angle.
- * @param axis rotation axis.
- * @param translation a vector of length 3.
- * @note Axis will be normalized in this function. And translation is applied
- * after the rotation. Use @ref createFromQuat(r, r * t / 2) to create a dual quaternion
- * which translation is applied before rotation.
- * @sa Quat
- */
- static DualQuat<_Tp> createFromAngleAxisTrans(const _Tp angle, const Vec<_Tp, 3> &axis, const Vec<_Tp, 3> &translation);
- /**
- * @brief Transform this dual quaternion to an affine transformation matrix \f$M\f$.
- * Dual quaternion consists of a rotation \f$r=[a,b,c,d]\f$ and a translation \f$t=[\Delta x,\Delta y,\Delta z]\f$. The
- * affine transformation matrix \f$M\f$ has the form
- * \f[
- * \begin{bmatrix}
- * 1-2(e_2^2 +e_3^2) &2(e_1e_2-e_0e_3) &2(e_0e_2+e_1e_3) &\Delta x\\
- * 2(e_0e_3+e_1e_2) &1-2(e_1^2+e_3^2) &2(e_2e_3-e_0e_1) &\Delta y\\
- * 2(e_1e_3-e_0e_2) &2(e_0e_1+e_2e_3) &1-2(e_1^2-e_2^2) &\Delta z\\
- * 0&0&0&1
- * \end{bmatrix}
- * \f]
- * if A is a matrix consisting of n points to be transformed, this could be achieved by
- * \f[
- * new\_A = M * A
- * \f]
- * where A has the form
- * \f[
- * \begin{bmatrix}
- * x_0& x_1& x_2&...&x_n\\
- * y_0& y_1& y_2&...&y_n\\
- * z_0& z_1& z_2&...&z_n\\
- * 1&1&1&...&1
- * \end{bmatrix}
- * \f]
- * where the same subscript represent the same point. The size of A should be \f$[4,n]\f$.
- * and the same size for matrix new_A.
- * @param _R 4x4 matrix that represents rotations and translation.
- * @note Translation is applied after the rotation. Use createFromQuat(r, r * t / 2) to create
- * a dual quaternion which translation is applied before rotation.
- */
- static DualQuat<_Tp> createFromMat(InputArray _R);
- /**
- * @brief create dual quaternion from an affine matrix. The definition of affine matrix can refer to createFromMat()
- */
- static DualQuat<_Tp> createFromAffine3(const Affine3<_Tp> &R);
- /**
- * @brief A dual quaternion is a vector in form of
- * \f[
- * \begin{equation}
- * \begin{split}
- * \sigma &=\boldsymbol{p} + \epsilon \boldsymbol{q}\\
- * &= \cos\hat{\frac{\theta}{2}}+\overline{\hat{l}}\sin\frac{\hat{\theta}}{2}
- * \end{split}
- * \end{equation}
- * \f]
- * where \f$\hat{\theta}\f$ is dual angle and \f$\overline{\hat{l}}\f$ is dual axis:
- * \f[
- * \hat{\theta}=\theta + \epsilon d,\\
- * \overline{\hat{l}}= \hat{l} +\epsilon m.
- * \f]
- * In this representation, \f$\theta\f$ is rotation angle and \f$(\hat{l},m)\f$ is the screw axis, d is the translation distance along the axis.
- *
- * @param angle rotation angle.
- * @param d translation along the rotation axis.
- * @param axis rotation axis represented by quaternion with w = 0.
- * @param moment the moment of line, and it should be orthogonal to axis.
- * @note Translation is applied after the rotation. Use createFromQuat(r, r * t / 2) to create
- * a dual quaternion which translation is applied before rotation.
- */
- static DualQuat<_Tp> createFromPitch(const _Tp angle, const _Tp d, const Vec<_Tp, 3> &axis, const Vec<_Tp, 3> &moment);
- /**
- * @brief return a quaternion which represent the real part of dual quaternion.
- * The definition of real part is in createFromQuat().
- * @sa createFromQuat, getDualPart
- */
- Quat<_Tp> getRealPart() const;
- /**
- * @brief return a quaternion which represent the dual part of dual quaternion.
- * The definition of dual part is in createFromQuat().
- * @sa createFromQuat, getRealPart
- */
- Quat<_Tp> getDualPart() const;
- /**
- * @brief return the conjugate of a dual quaternion.
- * \f[
- * \begin{equation}
- * \begin{split}
- * \sigma^* &= (p + \epsilon q)^*
- * &= (p^* + \epsilon q^*)
- * \end{split}
- * \end{equation}
- * \f]
- * @param dq a dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> conjugate(const DualQuat<T> &dq);
- /**
- * @brief return the conjugate of a dual quaternion.
- * \f[
- * \begin{equation}
- * \begin{split}
- * \sigma^* &= (p + \epsilon q)^*
- * &= (p^* + \epsilon q^*)
- * \end{split}
- * \end{equation}
- * \f]
- */
- DualQuat<_Tp> conjugate() const;
- /**
- * @brief return the rotation in quaternion form.
- */
- Quat<_Tp> getRotation(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief return the translation vector.
- * The rotation \f$r\f$ in this dual quaternion \f$\sigma\f$ is applied before translation \f$t\f$.
- * The dual quaternion \f$\sigma\f$ is defined as
- * \f[\begin{equation}
- * \begin{split}
- * \sigma &= p + \epsilon q \\
- * &= r + \frac{\epsilon}{2}{t}r.
- * \end{split}
- * \end{equation}\f]
- * Thus, the translation can be obtained as follows
- * \f[t = 2qp^*.\f]
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
- * and this function will save some computations.
- * @note This dual quaternion's translation is applied after the rotation.
- */
- Vec<_Tp, 3> getTranslation(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief return the norm \f$||\sigma||\f$ of dual quaternion \f$\sigma = p + \epsilon q\f$.
- * \f[
- * \begin{equation}
- * \begin{split}
- * ||\sigma|| &= \sqrt{\sigma * \sigma^*} \\
- * &= ||p|| + \epsilon \frac{p \cdot q}{||p||}.
- * \end{split}
- * \end{equation}
- * \f]
- * Generally speaking, the norm of a not unit dual
- * quaternion is a dual number. For convenience, we return it in the form of a dual quaternion
- * , i.e.
- * \f[ ||\sigma|| = [||p||, 0, 0, 0, \frac{p \cdot q}{||p||}, 0, 0, 0].\f]
- *
- * @note The data type of dual number is dual quaternion.
- */
- DualQuat<_Tp> norm() const;
- /**
- * @brief return a normalized dual quaternion.
- * A dual quaternion can be expressed as
- * \f[
- * \begin{equation}
- * \begin{split}
- * \sigma &= p + \epsilon q\\
- * &=||\sigma||\left(r+\frac{1}{2}tr\right)
- * \end{split}
- * \end{equation}
- * \f]
- * where \f$r, t\f$ represents the rotation (ordinary quaternion) and translation (pure ordinary quaternion) respectively,
- * and \f$||\sigma||\f$ is the norm of dual quaternion(a dual number).
- * A dual quaternion is unit if and only if
- * \f[
- * ||p||=1, p \cdot q=0
- * \f]
- * where \f$\cdot\f$ means dot product.
- * The process of normalization is
- * \f[
- * \sigma_{u}=\frac{\sigma}{||\sigma||}
- * \f]
- * Next, we simply proof \f$\sigma_u\f$ is a unit dual quaternion:
- * \f[
- * \renewcommand{\Im}{\operatorname{Im}}
- * \begin{equation}
- * \begin{split}
- * \sigma_{u}=\frac{\sigma}{||\sigma||}&=\frac{p + \epsilon q}{||p||+\epsilon\frac{p\cdot q}{||p||}}\\
- * &=\frac{p}{||p||}+\epsilon\left(\frac{q}{||p||}-p\frac{p\cdot q}{||p||^3}\right)\\
- * &=\frac{p}{||p||}+\epsilon\frac{1}{||p||^2}\left(qp^{*}-p\cdot q\right)\frac{p}{||p||}\\
- * &=\frac{p}{||p||}+\epsilon\frac{1}{||p||^2}\Im(qp^*)\frac{p}{||p||}.\\
- * \end{split}
- * \end{equation}
- * \f]
- * As expected, the real part is a rotation and dual part is a pure quaternion.
- */
- DualQuat<_Tp> normalize() const;
- /**
- * @brief if \f$\sigma = p + \epsilon q\f$ is a dual quaternion, p is not zero,
- * the inverse dual quaternion is
- * \f[\sigma^{-1} = \frac{\sigma^*}{||\sigma||^2}, \f]
- * or equivalentlly,
- * \f[\sigma^{-1} = p^{-1} - \epsilon p^{-1}qp^{-1}.\f]
- * @param dq a dual quaternion.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion
- * and this function will save some computations.
- */
- template <typename T>
- friend DualQuat<T> inv(const DualQuat<T> &dq, QuatAssumeType assumeUnit);
- /**
- * @brief if \f$\sigma = p + \epsilon q\f$ is a dual quaternion, p is not zero,
- * the inverse dual quaternion is
- * \f[\sigma^{-1} = \frac{\sigma^*}{||\sigma||^2}, \f]
- * or equivalentlly,
- * \f[\sigma^{-1} = p^{-1} - \epsilon p^{-1}qp^{-1}.\f]
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
- * and this function will save some computations.
- */
- DualQuat<_Tp> inv(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief return the dot product of two dual quaternion.
- * @param p other dual quaternion.
- */
- _Tp dot(DualQuat<_Tp> p) const;
- /**
- ** @brief return the value of \f$p^t\f$ where p is a dual quaternion.
- * This could be calculated as:
- * \f[
- * p^t = \exp(t\ln p)
- * \f]
- * @param dq a dual quaternion.
- * @param t index of power function.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion
- * and this function will save some computations.
- */
- template <typename T>
- friend DualQuat<T> power(const DualQuat<T> &dq, const T t, QuatAssumeType assumeUnit);
- /**
- ** @brief return the value of \f$p^t\f$ where p is a dual quaternion.
- * This could be calculated as:
- * \f[
- * p^t = \exp(t\ln p)
- * \f]
- *
- * @param t index of power function.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
- * and this function will save some computations.
- */
- DualQuat<_Tp> power(const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief return the value of \f$p^q\f$ where p and q are dual quaternions.
- * This could be calculated as:
- * \f[
- * p^q = \exp(q\ln p)
- * \f]
- * @param p a dual quaternion.
- * @param q a dual quaternion.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion p assume to be a dual unit quaternion
- * and this function will save some computations.
- */
- template <typename T>
- friend DualQuat<T> power(const DualQuat<T>& p, const DualQuat<T>& q, QuatAssumeType assumeUnit);
- /**
- * @brief return the value of \f$p^q\f$ where p and q are dual quaternions.
- * This could be calculated as:
- * \f[
- * p^q = \exp(q\ln p)
- * \f]
- *
- * @param q a dual quaternion
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a dual unit quaternion
- * and this function will save some computations.
- */
- DualQuat<_Tp> power(const DualQuat<_Tp>& q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief return the value of exponential function value
- * @param dq a dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> exp(const DualQuat<T> &dq);
- /**
- * @brief return the value of exponential function value
- */
- DualQuat<_Tp> exp() const;
- /**
- * @brief return the value of logarithm function value
- *
- * @param dq a dual quaternion.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion
- * and this function will save some computations.
- */
- template <typename T>
- friend DualQuat<T> log(const DualQuat<T> &dq, QuatAssumeType assumeUnit);
- /**
- * @brief return the value of logarithm function value
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
- * and this function will save some computations.
- */
- DualQuat<_Tp> log(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief Transform this dual quaternion to a vector.
- */
- Vec<_Tp, 8> toVec() const;
- /**
- * @brief Transform this dual quaternion to a affine transformation matrix
- * the form of matrix, see createFromMat().
- */
- Matx<_Tp, 4, 4> toMat(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief Transform this dual quaternion to a instance of Affine3.
- */
- Affine3<_Tp> toAffine3(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
- /**
- * @brief The screw linear interpolation(ScLERP) is an extension of spherical linear interpolation of dual quaternion.
- * If \f$\sigma_1\f$ and \f$\sigma_2\f$ are two dual quaternions representing the initial and final pose.
- * The interpolation of ScLERP function can be defined as:
- * \f[
- * ScLERP(t;\sigma_1,\sigma_2) = \sigma_1 * (\sigma_1^{-1} * \sigma_2)^t, t\in[0,1]
- * \f]
- *
- * @param q1 a dual quaternion represents a initial pose.
- * @param q2 a dual quaternion represents a final pose.
- * @param t interpolation parameter
- * @param directChange if true, it always return the shortest path.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
- * and this function will save some computations.
- *
- * For example
- * ```
- * double angle1 = CV_PI / 2;
- * Vec3d axis{0, 0, 1};
- * Vec3d t(0, 0, 3);
- * DualQuatd initial = DualQuatd::createFromAngleAxisTrans(angle1, axis, t);
- * double angle2 = CV_PI;
- * DualQuatd final = DualQuatd::createFromAngleAxisTrans(angle2, axis, t);
- * DualQuatd inter = DualQuatd::sclerp(initial, final, 0.5);
- * ```
- */
- static DualQuat<_Tp> sclerp(const DualQuat<_Tp> &q1, const DualQuat<_Tp> &q2, const _Tp t,
- bool directChange=true, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
- /**
- * @brief The method of Dual Quaternion linear Blending(DQB) is to compute a transformation between dual quaternion
- * \f$q_1\f$ and \f$q_2\f$ and can be defined as:
- * \f[
- * DQB(t;{\boldsymbol{q}}_1,{\boldsymbol{q}}_2)=
- * \frac{(1-t){\boldsymbol{q}}_1+t{\boldsymbol{q}}_2}{||(1-t){\boldsymbol{q}}_1+t{\boldsymbol{q}}_2||}.
- * \f]
- * where \f$q_1\f$ and \f$q_2\f$ are unit dual quaternions representing the input transformations.
- * If you want to use DQB that works for more than two rigid transformations, see @ref gdqblend
- *
- * @param q1 a unit dual quaternion representing the input transformations.
- * @param q2 a unit dual quaternion representing the input transformations.
- * @param t parameter \f$t\in[0,1]\f$.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
- * and this function will save some computations.
- *
- * @sa gdqblend
- */
- static DualQuat<_Tp> dqblend(const DualQuat<_Tp> &q1, const DualQuat<_Tp> &q2, const _Tp t,
- QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
- /**
- * @brief The generalized Dual Quaternion linear Blending works for more than two rigid transformations.
- * If these transformations are expressed as unit dual quaternions \f$q_1,...,q_n\f$ with convex weights
- * \f$w = (w_1,...,w_n)\f$, the generalized DQB is simply
- * \f[
- * gDQB(\boldsymbol{w};{\boldsymbol{q}}_1,...,{\boldsymbol{q}}_n)=\frac{w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n}
- * {||w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n||}.
- * \f]
- * @param dualquat vector of dual quaternions
- * @param weights vector of weights, the size of weights should be the same as dualquat, and the weights should
- * satisfy \f$\sum_0^n w_{i} = 1\f$ and \f$w_i>0\f$.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, these dual quaternions assume to be unit quaternions
- * and this function will save some computations.
- * @note the type of weights' element should be the same as the date type of dual quaternion inside the dualquat.
- */
- template <int cn>
- static DualQuat<_Tp> gdqblend(const Vec<DualQuat<_Tp>, cn> &dualquat, InputArray weights,
- QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
- /**
- * @brief The generalized Dual Quaternion linear Blending works for more than two rigid transformations.
- * If these transformations are expressed as unit dual quaternions \f$q_1,...,q_n\f$ with convex weights
- * \f$w = (w_1,...,w_n)\f$, the generalized DQB is simply
- * \f[
- * gDQB(\boldsymbol{w};{\boldsymbol{q}}_1,...,{\boldsymbol{q}}_n)=\frac{w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n}
- * {||w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n||}.
- * \f]
- * @param dualquat The dual quaternions which have 8 channels and 1 row or 1 col.
- * @param weights vector of weights, the size of weights should be the same as dualquat, and the weights should
- * satisfy \f$\sum_0^n w_{i} = 1\f$ and \f$w_i>0\f$.
- * @param assumeUnit if @ref QUAT_ASSUME_UNIT, these dual quaternions assume to be unit quaternions
- * and this function will save some computations.
- * @note the type of weights' element should be the same as the date type of dual quaternion inside the dualquat.
- */
- static DualQuat<_Tp> gdqblend(InputArray dualquat, InputArray weights,
- QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
- /**
- * @brief Return opposite dual quaternion \f$-p\f$
- * which satisfies \f$p + (-p) = 0.\f$
- *
- * For example
- * ```
- * DualQuatd q{1, 2, 3, 4, 5, 6, 7, 8};
- * std::cout << -q << std::endl; // [-1, -2, -3, -4, -5, -6, -7, -8]
- * ```
- */
- DualQuat<_Tp> operator-() const;
- /**
- * @brief return true if two dual quaternions p and q are nearly equal, i.e. when the absolute
- * value of each \f$p_i\f$ and \f$q_i\f$ is less than CV_DUAL_QUAT_EPS.
- */
- bool operator==(const DualQuat<_Tp>&) const;
- /**
- * @brief Subtraction operator of two dual quaternions p and q.
- * It returns a new dual quaternion that each value is the sum of \f$p_i\f$ and \f$-q_i\f$.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * std::cout << p - q << std::endl; //[-4, -4, -4, -4, 4, -4, -4, -4]
- * ```
- */
- DualQuat<_Tp> operator-(const DualQuat<_Tp>&) const;
- /**
- * @brief Subtraction assignment operator of two dual quaternions p and q.
- * It subtracts right operand from the left operand and assign the result to left operand.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * p -= q; // equivalent to p = p - q
- * std::cout << p << std::endl; //[-4, -4, -4, -4, 4, -4, -4, -4]
- *
- * ```
- */
- DualQuat<_Tp>& operator-=(const DualQuat<_Tp>&);
- /**
- * @brief Addition operator of two dual quaternions p and q.
- * It returns a new dual quaternion that each value is the sum of \f$p_i\f$ and \f$q_i\f$.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * std::cout << p + q << std::endl; //[6, 8, 10, 12, 14, 16, 18, 20]
- * ```
- */
- DualQuat<_Tp> operator+(const DualQuat<_Tp>&) const;
- /**
- * @brief Addition assignment operator of two dual quaternions p and q.
- * It adds right operand to the left operand and assign the result to left operand.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * p += q; // equivalent to p = p + q
- * std::cout << p << std::endl; //[6, 8, 10, 12, 14, 16, 18, 20]
- *
- * ```
- */
- DualQuat<_Tp>& operator+=(const DualQuat<_Tp>&);
- /**
- * @brief Multiplication assignment operator of two quaternions.
- * It multiplies right operand with the left operand and assign the result to left operand.
- *
- * Rule of dual quaternion multiplication:
- * The dual quaternion can be written as an ordered pair of quaternions [A, B]. Thus
- * \f[
- * \begin{equation}
- * \begin{split}
- * p * q &= [A, B][C, D]\\
- * &=[AC, AD + BC]
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * p *= q;
- * std::cout << p << std::endl; //[-60, 12, 30, 24, -216, 80, 124, 120]
- * ```
- */
- DualQuat<_Tp>& operator*=(const DualQuat<_Tp>&);
- /**
- * @brief Multiplication assignment operator of a quaternions and a scalar.
- * It multiplies right operand with the left operand and assign the result to left operand.
- *
- * Rule of dual quaternion multiplication with a scalar:
- * \f[
- * \begin{equation}
- * \begin{split}
- * p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\
- * &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s].
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double s = 2.0;
- * p *= s;
- * std::cout << p << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- DualQuat<_Tp> operator*=(const _Tp s);
- /**
- * @brief Multiplication operator of two dual quaternions q and p.
- * Multiplies values on either side of the operator.
- *
- * Rule of dual quaternion multiplication:
- * The dual quaternion can be written as an ordered pair of quaternions [A, B]. Thus
- * \f[
- * \begin{equation}
- * \begin{split}
- * p * q &= [A, B][C, D]\\
- * &=[AC, AD + BC]
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * std::cout << p * q << std::endl; //[-60, 12, 30, 24, -216, 80, 124, 120]
- * ```
- */
- DualQuat<_Tp> operator*(const DualQuat<_Tp>&) const;
- /**
- * @brief Division operator of a dual quaternions and a scalar.
- * It divides left operand with the right operand and assign the result to left operand.
- *
- * Rule of dual quaternion division with a scalar:
- * \f[
- * \begin{equation}
- * \begin{split}
- * p / s &= [w, x, y, z, w\_, x\_, y\_, z\_] / s\\
- * &=[w/s, x/s, y/s, z/s, w\_/s, x\_/s, y\_/s, z\_/s].
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double s = 2.0;
- * p /= s; // equivalent to p = p / s
- * std::cout << p << std::endl; //[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
- * ```
- * @note the type of scalar should be equal to this dual quaternion.
- */
- DualQuat<_Tp> operator/(const _Tp s) const;
- /**
- * @brief Division operator of two dual quaternions p and q.
- * Divides left hand operand by right hand operand.
- *
- * Rule of dual quaternion division with a dual quaternion:
- * \f[
- * \begin{equation}
- * \begin{split}
- * p / q &= p * q.inv()\\
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * std::cout << p / q << std::endl; // equivalent to p * q.inv()
- * ```
- */
- DualQuat<_Tp> operator/(const DualQuat<_Tp>&) const;
- /**
- * @brief Division assignment operator of two dual quaternions p and q;
- * It divides left operand with the right operand and assign the result to left operand.
- *
- * Rule of dual quaternion division with a quaternion:
- * \f[
- * \begin{equation}
- * \begin{split}
- * p / q&= p * q.inv()\\
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
- * p /= q; // equivalent to p = p * q.inv()
- * std::cout << p << std::endl;
- * ```
- */
- DualQuat<_Tp>& operator/=(const DualQuat<_Tp>&);
- /**
- * @brief Division assignment operator of a dual quaternions and a scalar.
- * It divides left operand with the right operand and assign the result to left operand.
- *
- * Rule of dual quaternion division with a scalar:
- * \f[
- * \begin{equation}
- * \begin{split}
- * p / s &= [w, x, y, z, w\_, x\_, y\_ ,z\_] / s\\
- * &=[w / s, x / s, y / s, z / s, w\_ / \space s, x\_ / \space s, y\_ / \space s, z\_ / \space s].
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double s = 2.0;;
- * p /= s; // equivalent to p = p / s
- * std::cout << p << std::endl; //[0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- Quat<_Tp>& operator/=(const _Tp s);
- /**
- * @brief Addition operator of a scalar and a dual quaternions.
- * Adds right hand operand from left hand operand.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double scalar = 2.0;
- * std::cout << scalar + p << std::endl; //[3.0, 2, 3, 4, 5, 6, 7, 8]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> cv::operator+(const T s, const DualQuat<T>&);
- /**
- * @brief Addition operator of a dual quaternions and a scalar.
- * Adds right hand operand from left hand operand.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double scalar = 2.0;
- * std::cout << p + scalar << std::endl; //[3.0, 2, 3, 4, 5, 6, 7, 8]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> cv::operator+(const DualQuat<T>&, const T s);
- /**
- * @brief Multiplication operator of a scalar and a dual quaternions.
- * It multiplies right operand with the left operand and assign the result to left operand.
- *
- * Rule of dual quaternion multiplication with a scalar:
- * \f[
- * \begin{equation}
- * \begin{split}
- * p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\
- * &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s].
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double s = 2.0;
- * std::cout << s * p << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> cv::operator*(const T s, const DualQuat<T>&);
- /**
- * @brief Subtraction operator of a dual quaternion and a scalar.
- * Subtracts right hand operand from left hand operand.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double scalar = 2.0;
- * std::cout << p - scalar << std::endl; //[-1, 2, 3, 4, 5, 6, 7, 8]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> cv::operator-(const DualQuat<T>&, const T s);
- /**
- * @brief Subtraction operator of a scalar and a dual quaternions.
- * Subtracts right hand operand from left hand operand.
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double scalar = 2.0;
- * std::cout << scalar - p << std::endl; //[1.0, -2, -3, -4, -5, -6, -7, -8]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> cv::operator-(const T s, const DualQuat<T>&);
- /**
- * @brief Multiplication operator of a dual quaternions and a scalar.
- * It multiplies right operand with the left operand and assign the result to left operand.
- *
- * Rule of dual quaternion multiplication with a scalar:
- * \f[
- * \begin{equation}
- * \begin{split}
- * p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\
- * &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s].
- * \end{split}
- * \end{equation}
- * \f]
- *
- * For example
- * ```
- * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
- * double s = 2.0;
- * std::cout << p * s << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16]
- * ```
- * @note the type of scalar should be equal to the dual quaternion.
- */
- template <typename T>
- friend DualQuat<T> cv::operator*(const DualQuat<T>&, const T s);
- template <typename S>
- friend std::ostream& cv::operator<<(std::ostream&, const DualQuat<S>&);
- };
- using DualQuatd = DualQuat<double>;
- using DualQuatf = DualQuat<float>;
- //! @} core
- }//namespace
- #include "dualquaternion.inl.hpp"
- #endif /* OPENCV_CORE_QUATERNION_HPP */
|