//======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Copyright 2004, 2005 Trustees of Indiana University // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, // Doug Gregor, D. Kevin McGrath // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //=======================================================================// #ifndef BOOST_GRAPH_DETAIL_SPARSE_ORDERING_HPP #define BOOST_GRAPH_DETAIL_SPARSE_ORDERING_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace sparse { // rcm_queue // // This is a custom queue type used in the // *_ordering algorithms. // In addition to the normal queue operations, the // rcm_queue provides: // // int eccentricity() const; // value_type spouse() const; // // yes, it's a bad name...but it works, so use it template < class Vertex, class DegreeMap, class Container = std::deque< Vertex > > class rcm_queue : public std::queue< Vertex, Container > { typedef std::queue< Vertex > base; public: typedef typename base::value_type value_type; typedef typename base::size_type size_type; /* SGI queue has not had a contructor queue(const Container&) */ inline rcm_queue(DegreeMap deg) : _size(0), Qsize(1), eccen(-1), degree(deg) { } inline void pop() { if (!_size) Qsize = base::size(); base::pop(); if (_size == Qsize - 1) { _size = 0; ++eccen; } else ++_size; } inline value_type& front() { value_type& u = base::front(); if (_size == 0) w = u; else if (get(degree, u) < get(degree, w)) w = u; return u; } inline const value_type& front() const { const value_type& u = base::front(); if (_size == 0) w = u; else if (get(degree, u) < get(degree, w)) w = u; return u; } inline value_type& top() { return front(); } inline const value_type& top() const { return front(); } inline size_type size() const { return base::size(); } inline size_type eccentricity() const { return eccen; } inline value_type spouse() const { return w; } protected: size_type _size; size_type Qsize; int eccen; mutable value_type w; DegreeMap degree; }; template < typename Tp, typename Sequence = std::deque< Tp > > class sparse_ordering_queue : public boost::queue< Tp, Sequence > { public: typedef typename Sequence::iterator iterator; typedef typename Sequence::reverse_iterator reverse_iterator; typedef queue< Tp, Sequence > base; typedef typename Sequence::size_type size_type; inline iterator begin() { return this->c.begin(); } inline reverse_iterator rbegin() { return this->c.rbegin(); } inline iterator end() { return this->c.end(); } inline reverse_iterator rend() { return this->c.rend(); } inline Tp& operator[](int n) { return this->c[n]; } inline size_type size() { return this->c.size(); } protected: // nothing }; } // namespace sparse // Compute Pseudo peripheral // // To compute an approximated peripheral for a given vertex. // Used in king_ordering algorithm. // template < class Graph, class Vertex, class ColorMap, class DegreeMap > Vertex pseudo_peripheral_pair( Graph const& G, const Vertex& u, int& ecc, ColorMap color, DegreeMap degree) { typedef typename property_traits< ColorMap >::value_type ColorValue; typedef color_traits< ColorValue > Color; sparse::rcm_queue< Vertex, DegreeMap > Q(degree); typename boost::graph_traits< Graph >::vertex_iterator ui, ui_end; for (boost::tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui) if (get(color, *ui) != Color::red()) put(color, *ui, Color::white()); breadth_first_visit(G, u, buffer(Q).color_map(color)); ecc = Q.eccentricity(); return Q.spouse(); } // Find a good starting node // // This is to find a good starting node for the // king_ordering algorithm. "good" is in the sense // of the ordering generated by RCM. // template < class Graph, class Vertex, class Color, class Degree > Vertex find_starting_node(Graph const& G, Vertex r, Color color, Degree degree) { Vertex x, y; int eccen_r, eccen_x; x = pseudo_peripheral_pair(G, r, eccen_r, color, degree); y = pseudo_peripheral_pair(G, x, eccen_x, color, degree); while (eccen_x > eccen_r) { r = x; eccen_r = eccen_x; x = y; y = pseudo_peripheral_pair(G, x, eccen_x, color, degree); } return x; } template < typename Graph > class out_degree_property_map : public put_get_helper< typename graph_traits< Graph >::degree_size_type, out_degree_property_map< Graph > > { public: typedef typename graph_traits< Graph >::vertex_descriptor key_type; typedef typename graph_traits< Graph >::degree_size_type value_type; typedef value_type reference; typedef readable_property_map_tag category; out_degree_property_map(const Graph& g) : m_g(g) {} value_type operator[](const key_type& v) const { return out_degree(v, m_g); } private: const Graph& m_g; }; template < typename Graph > inline out_degree_property_map< Graph > make_out_degree_map(const Graph& g) { return out_degree_property_map< Graph >(g); } } // namespace boost #endif // BOOST_GRAPH_KING_HPP