// //======================================================================= // Copyright 1997-2001 University of Notre Dame. // Authors: Jeremy G. Siek, Lie-Quan Lee, Andrew Lumsdaine // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= // /* This file implements the following functions: template void copy_graph(const VertexListGraph& g_in, MutableGraph& g_out) template void copy_graph(const VertexListGraph& g_in, MutableGraph& g_out, const bgl_named_params& params) template typename graph_traits::vertex_descriptor copy_component(IncidenceGraph& g_in, typename graph_traits::vertex_descriptor src, MutableGraph& g_out) template typename graph_traits::vertex_descriptor copy_component(IncidenceGraph& g_in, typename graph_traits::vertex_descriptor src, MutableGraph& g_out, const bgl_named_params& params) */ #ifndef BOOST_GRAPH_COPY_HPP #define BOOST_GRAPH_COPY_HPP #include #include #include #include #include #include #include #include namespace boost { namespace detail { // Hack to make transpose_graph work with the same interface as before template < typename Graph, typename Desc > struct remove_reverse_edge_descriptor { typedef Desc type; static Desc convert(const Desc& d, const Graph&) { return d; } }; template < typename Graph, typename Desc > struct remove_reverse_edge_descriptor< Graph, reverse_graph_edge_descriptor< Desc > > { typedef Desc type; static Desc convert( const reverse_graph_edge_descriptor< Desc >& d, const Graph& g) { return get(edge_underlying, g, d); } }; // Add a reverse_graph_edge_descriptor wrapper if the Graph is a // reverse_graph but the edge descriptor is from the original graph (this // case comes from the fact that transpose_graph uses reverse_graph // internally but doesn't expose the different edge descriptor type to the // user). template < typename Desc, typename Graph > struct add_reverse_edge_descriptor { typedef Desc type; static Desc convert(const Desc& d) { return d; } }; template < typename Desc, typename G, typename GR > struct add_reverse_edge_descriptor< Desc, boost::reverse_graph< G, GR > > { typedef reverse_graph_edge_descriptor< Desc > type; static reverse_graph_edge_descriptor< Desc > convert(const Desc& d) { return reverse_graph_edge_descriptor< Desc >(d); } }; template < typename Desc, typename G, typename GR > struct add_reverse_edge_descriptor< reverse_graph_edge_descriptor< Desc >, boost::reverse_graph< G, GR > > { typedef reverse_graph_edge_descriptor< Desc > type; static reverse_graph_edge_descriptor< Desc > convert( const reverse_graph_edge_descriptor< Desc >& d) { return d; } }; // Default edge and vertex property copiers template < typename Graph1, typename Graph2 > struct edge_copier { edge_copier(const Graph1& g1, Graph2& g2) : edge_all_map1(get(edge_all, g1)), edge_all_map2(get(edge_all, g2)) { } template < typename Edge1, typename Edge2 > void operator()(const Edge1& e1, Edge2& e2) const { put(edge_all_map2, e2, get(edge_all_map1, add_reverse_edge_descriptor< Edge1, Graph1 >::convert(e1))); } typename property_map< Graph1, edge_all_t >::const_type edge_all_map1; mutable typename property_map< Graph2, edge_all_t >::type edge_all_map2; }; template < typename Graph1, typename Graph2 > inline edge_copier< Graph1, Graph2 > make_edge_copier( const Graph1& g1, Graph2& g2) { return edge_copier< Graph1, Graph2 >(g1, g2); } template < typename Graph1, typename Graph2 > struct vertex_copier { vertex_copier(const Graph1& g1, Graph2& g2) : vertex_all_map1(get(vertex_all, g1)) , vertex_all_map2(get(vertex_all, g2)) { } template < typename Vertex1, typename Vertex2 > void operator()(const Vertex1& v1, Vertex2& v2) const { put(vertex_all_map2, v2, get(vertex_all_map1, v1)); } typename property_map< Graph1, vertex_all_t >::const_type vertex_all_map1; mutable typename property_map< Graph2, vertex_all_t >::type vertex_all_map2; }; template < typename Graph1, typename Graph2 > inline vertex_copier< Graph1, Graph2 > make_vertex_copier( const Graph1& g1, Graph2& g2) { return vertex_copier< Graph1, Graph2 >(g1, g2); } // Copy all the vertices and edges of graph g_in into graph g_out. // The copy_vertex and copy_edge function objects control how vertex // and edge properties are copied. template < int Version > struct copy_graph_impl { }; template <> struct copy_graph_impl< 0 > { template < typename Graph, typename MutableGraph, typename CopyVertex, typename CopyEdge, typename IndexMap, typename Orig2CopyVertexIndexMap > static void apply(const Graph& g_in, MutableGraph& g_out, CopyVertex copy_vertex, CopyEdge copy_edge, Orig2CopyVertexIndexMap orig2copy, IndexMap) { typedef remove_reverse_edge_descriptor< Graph, typename graph_traits< Graph >::edge_descriptor > cvt; typename graph_traits< Graph >::vertex_iterator vi, vi_end; for (boost::tie(vi, vi_end) = vertices(g_in); vi != vi_end; ++vi) { typename graph_traits< MutableGraph >::vertex_descriptor new_v = add_vertex(g_out); put(orig2copy, *vi, new_v); copy_vertex(*vi, new_v); } typename graph_traits< Graph >::edge_iterator ei, ei_end; for (boost::tie(ei, ei_end) = edges(g_in); ei != ei_end; ++ei) { typename graph_traits< MutableGraph >::edge_descriptor new_e; bool inserted; boost::tie(new_e, inserted) = add_edge(get(orig2copy, source(*ei, g_in)), get(orig2copy, target(*ei, g_in)), g_out); copy_edge(cvt::convert(*ei, g_in), new_e); } } }; // for directed graphs template <> struct copy_graph_impl< 1 > { template < typename Graph, typename MutableGraph, typename CopyVertex, typename CopyEdge, typename IndexMap, typename Orig2CopyVertexIndexMap > static void apply(const Graph& g_in, MutableGraph& g_out, CopyVertex copy_vertex, CopyEdge copy_edge, Orig2CopyVertexIndexMap orig2copy, IndexMap) { typedef remove_reverse_edge_descriptor< Graph, typename graph_traits< Graph >::edge_descriptor > cvt; typename graph_traits< Graph >::vertex_iterator vi, vi_end; for (boost::tie(vi, vi_end) = vertices(g_in); vi != vi_end; ++vi) { typename graph_traits< MutableGraph >::vertex_descriptor new_v = add_vertex(g_out); put(orig2copy, *vi, new_v); copy_vertex(*vi, new_v); } for (boost::tie(vi, vi_end) = vertices(g_in); vi != vi_end; ++vi) { typename graph_traits< Graph >::out_edge_iterator ei, ei_end; for (boost::tie(ei, ei_end) = out_edges(*vi, g_in); ei != ei_end; ++ei) { typename graph_traits< MutableGraph >::edge_descriptor new_e; bool inserted; boost::tie(new_e, inserted) = add_edge(get(orig2copy, source(*ei, g_in)), get(orig2copy, target(*ei, g_in)), g_out); copy_edge(cvt::convert(*ei, g_in), new_e); } } } }; // for undirected graphs template <> struct copy_graph_impl< 2 > { template < typename Graph, typename MutableGraph, typename CopyVertex, typename CopyEdge, typename IndexMap, typename Orig2CopyVertexIndexMap > static void apply(const Graph& g_in, MutableGraph& g_out, CopyVertex copy_vertex, CopyEdge copy_edge, Orig2CopyVertexIndexMap orig2copy, IndexMap index_map) { typedef remove_reverse_edge_descriptor< Graph, typename graph_traits< Graph >::edge_descriptor > cvt; typedef color_traits< default_color_type > Color; std::vector< default_color_type > color( num_vertices(g_in), Color::white()); typename graph_traits< Graph >::vertex_iterator vi, vi_end; for (boost::tie(vi, vi_end) = vertices(g_in); vi != vi_end; ++vi) { typename graph_traits< MutableGraph >::vertex_descriptor new_v = add_vertex(g_out); put(orig2copy, *vi, new_v); copy_vertex(*vi, new_v); } for (boost::tie(vi, vi_end) = vertices(g_in); vi != vi_end; ++vi) { typename graph_traits< Graph >::out_edge_iterator ei, ei_end; for (boost::tie(ei, ei_end) = out_edges(*vi, g_in); ei != ei_end; ++ei) { typename graph_traits< MutableGraph >::edge_descriptor new_e; bool inserted; if (color[get(index_map, target(*ei, g_in))] == Color::white()) { boost::tie(new_e, inserted) = add_edge(get(orig2copy, source(*ei, g_in)), get(orig2copy, target(*ei, g_in)), g_out); copy_edge(cvt::convert(*ei, g_in), new_e); } } color[get(index_map, *vi)] = Color::black(); } } }; template < class Graph > struct choose_graph_copy { typedef typename graph_traits< Graph >::traversal_category Trv; typedef typename graph_traits< Graph >::directed_category Dr; enum { algo = (is_convertible< Trv, vertex_list_graph_tag >::value && is_convertible< Trv, edge_list_graph_tag >::value) ? 0 : is_convertible< Dr, directed_tag >::value ? 1 : 2 }; typedef copy_graph_impl< algo > type; }; //------------------------------------------------------------------------- struct choose_copier_parameter { template < class P, class G1, class G2 > struct bind_ { typedef const P& result_type; static result_type apply(const P& p, const G1&, G2&) { return p; } }; }; struct choose_default_edge_copier { template < class P, class G1, class G2 > struct bind_ { typedef edge_copier< G1, G2 > result_type; static result_type apply(const P&, const G1& g1, G2& g2) { return result_type(g1, g2); } }; }; template < class Param > struct choose_edge_copy { typedef choose_copier_parameter type; }; template <> struct choose_edge_copy< param_not_found > { typedef choose_default_edge_copier type; }; template < class Param, class G1, class G2 > struct choose_edge_copier_helper { typedef typename choose_edge_copy< Param >::type Selector; typedef typename Selector::template bind_< Param, G1, G2 > Bind; typedef Bind type; typedef typename Bind::result_type result_type; }; template < typename Param, typename G1, typename G2 > typename detail::choose_edge_copier_helper< Param, G1, G2 >::result_type choose_edge_copier(const Param& params, const G1& g_in, G2& g_out) { typedef typename detail::choose_edge_copier_helper< Param, G1, G2 >::type Choice; return Choice::apply(params, g_in, g_out); } struct choose_default_vertex_copier { template < class P, class G1, class G2 > struct bind_ { typedef vertex_copier< G1, G2 > result_type; static result_type apply(const P&, const G1& g1, G2& g2) { return result_type(g1, g2); } }; }; template < class Param > struct choose_vertex_copy { typedef choose_copier_parameter type; }; template <> struct choose_vertex_copy< param_not_found > { typedef choose_default_vertex_copier type; }; template < class Param, class G1, class G2 > struct choose_vertex_copier_helper { typedef typename choose_vertex_copy< Param >::type Selector; typedef typename Selector::template bind_< Param, G1, G2 > Bind; typedef Bind type; typedef typename Bind::result_type result_type; }; template < typename Param, typename G1, typename G2 > typename detail::choose_vertex_copier_helper< Param, G1, G2 >::result_type choose_vertex_copier(const Param& params, const G1& g_in, G2& g_out) { typedef typename detail::choose_vertex_copier_helper< Param, G1, G2 >::type Choice; return Choice::apply(params, g_in, g_out); } } // namespace detail template < typename VertexListGraph, typename MutableGraph > void copy_graph(const VertexListGraph& g_in, MutableGraph& g_out) { if (num_vertices(g_in) == 0) return; typedef typename graph_traits< MutableGraph >::vertex_descriptor vertex_t; std::vector< vertex_t > orig2copy(num_vertices(g_in)); typedef typename detail::choose_graph_copy< VertexListGraph >::type copy_impl; copy_impl::apply(g_in, g_out, detail::make_vertex_copier(g_in, g_out), detail::make_edge_copier(g_in, g_out), make_iterator_property_map( orig2copy.begin(), get(vertex_index, g_in), orig2copy[0]), get(vertex_index, g_in)); } template < typename VertexListGraph, typename MutableGraph, class P, class T, class R > void copy_graph(const VertexListGraph& g_in, MutableGraph& g_out, const bgl_named_params< P, T, R >& params) { typename std::vector< T >::size_type n; n = is_default_param(get_param(params, orig_to_copy_t())) ? num_vertices(g_in) : 1; if (n == 0) return; std::vector< BOOST_DEDUCED_TYPENAME graph_traits< MutableGraph >::vertex_descriptor > orig2copy(n); typedef typename detail::choose_graph_copy< VertexListGraph >::type copy_impl; copy_impl::apply(g_in, g_out, detail::choose_vertex_copier( get_param(params, vertex_copy_t()), g_in, g_out), detail::choose_edge_copier( get_param(params, edge_copy_t()), g_in, g_out), choose_param(get_param(params, orig_to_copy_t()), make_iterator_property_map(orig2copy.begin(), choose_const_pmap( get_param(params, vertex_index), g_in, vertex_index), orig2copy[0])), choose_const_pmap(get_param(params, vertex_index), g_in, vertex_index)); } namespace detail { template < class NewGraph, class Copy2OrigIndexMap, class CopyVertex, class CopyEdge > struct graph_copy_visitor : public bfs_visitor<> { graph_copy_visitor( NewGraph& graph, Copy2OrigIndexMap c, CopyVertex cv, CopyEdge ce) : g_out(graph), orig2copy(c), copy_vertex(cv), copy_edge(ce) { } template < class Vertex > typename graph_traits< NewGraph >::vertex_descriptor copy_one_vertex( Vertex u) const { typename graph_traits< NewGraph >::vertex_descriptor new_u = add_vertex(g_out); put(orig2copy, u, new_u); copy_vertex(u, new_u); return new_u; } template < class Edge, class Graph > void tree_edge(Edge e, const Graph& g_in) const { // For a tree edge, the target vertex has not been copied yet. typename graph_traits< NewGraph >::edge_descriptor new_e; bool inserted; boost::tie(new_e, inserted) = add_edge(get(orig2copy, source(e, g_in)), this->copy_one_vertex(target(e, g_in)), g_out); copy_edge(e, new_e); } template < class Edge, class Graph > void non_tree_edge(Edge e, const Graph& g_in) const { // For a non-tree edge, the target vertex has already been copied. typename graph_traits< NewGraph >::edge_descriptor new_e; bool inserted; boost::tie(new_e, inserted) = add_edge(get(orig2copy, source(e, g_in)), get(orig2copy, target(e, g_in)), g_out); copy_edge(e, new_e); } private: NewGraph& g_out; Copy2OrigIndexMap orig2copy; CopyVertex copy_vertex; CopyEdge copy_edge; }; template < typename Graph, typename MutableGraph, typename CopyVertex, typename CopyEdge, typename Orig2CopyVertexIndexMap, typename Params > typename graph_traits< MutableGraph >::vertex_descriptor copy_component_impl(const Graph& g_in, typename graph_traits< Graph >::vertex_descriptor src, MutableGraph& g_out, CopyVertex copy_vertex, CopyEdge copy_edge, Orig2CopyVertexIndexMap orig2copy, const Params& params) { graph_copy_visitor< MutableGraph, Orig2CopyVertexIndexMap, CopyVertex, CopyEdge > vis(g_out, orig2copy, copy_vertex, copy_edge); typename graph_traits< MutableGraph >::vertex_descriptor src_copy = vis.copy_one_vertex(src); breadth_first_search(g_in, src, params.visitor(vis)); return src_copy; } } // namespace detail // Copy all the vertices and edges of graph g_in that are reachable // from the source vertex into graph g_out. Return the vertex // in g_out that matches the source vertex of g_in. template < typename IncidenceGraph, typename MutableGraph, typename P, typename T, typename R > typename graph_traits< MutableGraph >::vertex_descriptor copy_component( IncidenceGraph& g_in, typename graph_traits< IncidenceGraph >::vertex_descriptor src, MutableGraph& g_out, const bgl_named_params< P, T, R >& params) { typename std::vector< T >::size_type n; n = is_default_param(get_param(params, orig_to_copy_t())) ? num_vertices(g_in) : 1; std::vector< typename graph_traits< IncidenceGraph >::vertex_descriptor > orig2copy(n); return detail::copy_component_impl(g_in, src, g_out, detail::choose_vertex_copier( get_param(params, vertex_copy_t()), g_in, g_out), detail::choose_edge_copier( get_param(params, edge_copy_t()), g_in, g_out), choose_param(get_param(params, orig_to_copy_t()), make_iterator_property_map(orig2copy.begin(), choose_pmap( get_param(params, vertex_index), g_in, vertex_index), orig2copy[0])), params); } template < typename IncidenceGraph, typename MutableGraph > typename graph_traits< MutableGraph >::vertex_descriptor copy_component( IncidenceGraph& g_in, typename graph_traits< IncidenceGraph >::vertex_descriptor src, MutableGraph& g_out) { std::vector< typename graph_traits< IncidenceGraph >::vertex_descriptor > orig2copy(num_vertices(g_in)); return detail::copy_component_impl(g_in, src, g_out, make_vertex_copier(g_in, g_out), make_edge_copier(g_in, g_out), make_iterator_property_map( orig2copy.begin(), get(vertex_index, g_in), orig2copy[0]), bgl_named_params< char, char >('x') // dummy param object ); } } // namespace boost #endif // BOOST_GRAPH_COPY_HPP