// boost\math\distributions\non_central_t.hpp // Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP #define BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP #include #include // for nc beta #include // for normal CDF and quantile #include #include // quantile namespace boost { namespace math { template class non_central_t_distribution; namespace detail{ template T non_central_t2_p(T v, T delta, T x, T y, const Policy& pol, T init_val) { BOOST_MATH_STD_USING // // Variables come first: // boost::uintmax_t max_iter = policies::get_max_series_iterations(); T errtol = policies::get_epsilon(); T d2 = delta * delta / 2; // // k is the starting point for iteration, and is the // maximum of the poisson weighting term, we don't // ever allow k == 0 as this can lead to catastrophic // cancellation errors later (test case is v = 1621286869049072.3 // delta = 0.16212868690490723, x = 0.86987415482475994). // int k = itrunc(d2); T pois; if(k == 0) k = 1; // Starting Poisson weight: pois = gamma_p_derivative(T(k+1), d2, pol) * tgamma_delta_ratio(T(k + 1), T(0.5f)) * delta / constants::root_two(); if(pois == 0) return init_val; T xterm, beta; // Recurrence & starting beta terms: beta = x < y ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, false, true, &xterm) : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, true, true, &xterm); xterm *= y / (v / 2 + k); T poisf(pois), betaf(beta), xtermf(xterm); T sum = init_val; if((xterm == 0) && (beta == 0)) return init_val; // // Backwards recursion first, this is the stable // direction for recursion: // boost::uintmax_t count = 0; T last_term = 0; for(int i = k; i >= 0; --i) { T term = beta * pois; sum += term; // Don't terminate on first term in case we "fixed" k above: if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol) break; last_term = term; pois *= (i + 0.5f) / d2; beta += xterm; xterm *= (i) / (x * (v / 2 + i - 1)); ++count; } last_term = 0; for(int i = k + 1; ; ++i) { poisf *= d2 / (i + 0.5f); xtermf *= (x * (v / 2 + i - 1)) / (i); betaf -= xtermf; T term = poisf * betaf; sum += term; if((fabs(last_term) >= fabs(term)) && (fabs(term/sum) < errtol)) break; last_term = term; ++count; if(count > max_iter) { return policies::raise_evaluation_error( "cdf(non_central_t_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); } } return sum; } template T non_central_t2_q(T v, T delta, T x, T y, const Policy& pol, T init_val) { BOOST_MATH_STD_USING // // Variables come first: // boost::uintmax_t max_iter = policies::get_max_series_iterations(); T errtol = boost::math::policies::get_epsilon(); T d2 = delta * delta / 2; // // k is the starting point for iteration, and is the // maximum of the poisson weighting term, we don't allow // k == 0 as this can cause catastrophic cancellation errors // (test case is v = 561908036470413.25, delta = 0.056190803647041321, // x = 1.6155232703966216): // int k = itrunc(d2); if(k == 0) k = 1; // Starting Poisson weight: T pois; if((k < (int)(max_factorial::value)) && (d2 < tools::log_max_value()) && (log(d2) * k < tools::log_max_value())) { // // For small k we can optimise this calculation by using // a simpler reduced formula: // pois = exp(-d2); pois *= pow(d2, static_cast(k)); pois /= boost::math::tgamma(T(k + 1 + 0.5), pol); pois *= delta / constants::root_two(); } else { pois = gamma_p_derivative(T(k+1), d2, pol) * tgamma_delta_ratio(T(k + 1), T(0.5f)) * delta / constants::root_two(); } if(pois == 0) return init_val; // Recurance term: T xterm; T beta; // Starting beta term: if(k != 0) { beta = x < y ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, true, true, &xterm) : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, false, true, &xterm); xterm *= y / (v / 2 + k); } else { beta = pow(y, v / 2); xterm = beta; } T poisf(pois), betaf(beta), xtermf(xterm); T sum = init_val; if((xterm == 0) && (beta == 0)) return init_val; // // Fused forward and backwards recursion: // boost::uintmax_t count = 0; T last_term = 0; for(int i = k + 1, j = k; ; ++i, --j) { poisf *= d2 / (i + 0.5f); xtermf *= (x * (v / 2 + i - 1)) / (i); betaf += xtermf; T term = poisf * betaf; if(j >= 0) { term += beta * pois; pois *= (j + 0.5f) / d2; beta -= xterm; xterm *= (j) / (x * (v / 2 + j - 1)); } sum += term; // Don't terminate on first term in case we "fixed" the value of k above: if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol) break; last_term = term; if(count > max_iter) { return policies::raise_evaluation_error( "cdf(non_central_t_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); } ++count; } return sum; } template T non_central_t_cdf(T v, T delta, T t, bool invert, const Policy& pol) { BOOST_MATH_STD_USING if ((boost::math::isinf)(v)) { // Infinite degrees of freedom, so use normal distribution located at delta. normal_distribution n(delta, 1); return cdf(n, t); } // // Otherwise, for t < 0 we have to use the reflection formula: if(t < 0) { t = -t; delta = -delta; invert = !invert; } if(fabs(delta / (4 * v)) < policies::get_epsilon()) { // Approximate with a Student's T centred on delta, // the crossover point is based on eq 2.6 from // "A Comparison of Approximations To Percentiles of the // Noncentral t-Distribution". H. Sahai and M. M. Ojeda, // Revista Investigacion Operacional Vol 21, No 2, 2000. // Original sources referenced in the above are: // "Some Approximations to the Percentage Points of the Noncentral // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31. // "Continuous Univariate Distributions". N.L. Johnson, S. Kotz and // N. Balkrishnan. 1995. John Wiley and Sons New York. T result = cdf(students_t_distribution(v), t - delta); return invert ? 1 - result : result; } // // x and y are the corresponding random // variables for the noncentral beta distribution, // with y = 1 - x: // T x = t * t / (v + t * t); T y = v / (v + t * t); T d2 = delta * delta; T a = 0.5f; T b = v / 2; T c = a + b + d2 / 2; // // Crossover point for calculating p or q is the same // as for the noncentral beta: // T cross = 1 - (b / c) * (1 + d2 / (2 * c * c)); T result; if(x < cross) { // // Calculate p: // if(x != 0) { result = non_central_beta_p(a, b, d2, x, y, pol); result = non_central_t2_p(v, delta, x, y, pol, result); result /= 2; } else result = 0; result += cdf(boost::math::normal_distribution(), -delta); } else { // // Calculate q: // invert = !invert; if(x != 0) { result = non_central_beta_q(a, b, d2, x, y, pol); result = non_central_t2_q(v, delta, x, y, pol, result); result /= 2; } else // x == 0 result = cdf(complement(boost::math::normal_distribution(), -delta)); } if(invert) result = 1 - result; return result; } template T non_central_t_quantile(const char* function, T v, T delta, T p, T q, const Policy&) { BOOST_MATH_STD_USING // static const char* function = "quantile(non_central_t_distribution<%1%>, %1%)"; // now passed as function typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; T r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, delta, &r, Policy()) || !detail::check_probability( function, p, &r, Policy())) return r; value_type guess = 0; if ( ((boost::math::isinf)(v)) || (v > 1 / boost::math::tools::epsilon()) ) { // Infinite or very large degrees of freedom, so use normal distribution located at delta. normal_distribution n(delta, 1); if (p < q) { return quantile(n, p); } else { return quantile(complement(n, q)); } } else if(v > 3) { // Use normal distribution to calculate guess. value_type mean = (v > 1 / policies::get_epsilon()) ? delta : delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f)); value_type var = (v > 1 / policies::get_epsilon()) ? value_type(1) : (((delta * delta + 1) * v) / (v - 2) - mean * mean); if(p < q) guess = quantile(normal_distribution(mean, var), p); else guess = quantile(complement(normal_distribution(mean, var), q)); } // // We *must* get the sign of the initial guess correct, // or our root-finder will fail, so double check it now: // value_type pzero = non_central_t_cdf( static_cast(v), static_cast(delta), static_cast(0), !(p < q), forwarding_policy()); int s; if(p < q) s = boost::math::sign(p - pzero); else s = boost::math::sign(pzero - q); if(s != boost::math::sign(guess)) { guess = static_cast(s); } value_type result = detail::generic_quantile( non_central_t_distribution(v, delta), (p < q ? p : q), guess, (p >= q), function); return policies::checked_narrowing_cast( result, function); } template T non_central_t2_pdf(T n, T delta, T x, T y, const Policy& pol, T init_val) { BOOST_MATH_STD_USING // // Variables come first: // boost::uintmax_t max_iter = policies::get_max_series_iterations(); T errtol = boost::math::policies::get_epsilon(); T d2 = delta * delta / 2; // // k is the starting point for iteration, and is the // maximum of the poisson weighting term: // int k = itrunc(d2); T pois, xterm; if(k == 0) k = 1; // Starting Poisson weight: pois = gamma_p_derivative(T(k+1), d2, pol) * tgamma_delta_ratio(T(k + 1), T(0.5f)) * delta / constants::root_two(); // Starting beta term: xterm = x < y ? ibeta_derivative(T(k + 1), n / 2, x, pol) : ibeta_derivative(n / 2, T(k + 1), y, pol); T poisf(pois), xtermf(xterm); T sum = init_val; if((pois == 0) || (xterm == 0)) return init_val; // // Backwards recursion first, this is the stable // direction for recursion: // boost::uintmax_t count = 0; for(int i = k; i >= 0; --i) { T term = xterm * pois; sum += term; if(((fabs(term/sum) < errtol) && (i != k)) || (term == 0)) break; pois *= (i + 0.5f) / d2; xterm *= (i) / (x * (n / 2 + i)); ++count; if(count > max_iter) { return policies::raise_evaluation_error( "pdf(non_central_t_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); } } for(int i = k + 1; ; ++i) { poisf *= d2 / (i + 0.5f); xtermf *= (x * (n / 2 + i)) / (i); T term = poisf * xtermf; sum += term; if((fabs(term/sum) < errtol) || (term == 0)) break; ++count; if(count > max_iter) { return policies::raise_evaluation_error( "pdf(non_central_t_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); } } return sum; } template T non_central_t_pdf(T n, T delta, T t, const Policy& pol) { BOOST_MATH_STD_USING if ((boost::math::isinf)(n)) { // Infinite degrees of freedom, so use normal distribution located at delta. normal_distribution norm(delta, 1); return pdf(norm, t); } // // Otherwise, for t < 0 we have to use the reflection formula: if(t < 0) { t = -t; delta = -delta; } if(t == 0) { // // Handle this as a special case, using the formula // from Weisstein, Eric W. // "Noncentral Student's t-Distribution." // From MathWorld--A Wolfram Web Resource. // http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html // // The formula is simplified thanks to the relation // 1F1(a,b,0) = 1. // return tgamma_delta_ratio(n / 2 + 0.5f, T(0.5f)) * sqrt(n / constants::pi()) * exp(-delta * delta / 2) / 2; } if(fabs(delta / (4 * n)) < policies::get_epsilon()) { // Approximate with a Student's T centred on delta, // the crossover point is based on eq 2.6 from // "A Comparison of Approximations To Percentiles of the // Noncentral t-Distribution". H. Sahai and M. M. Ojeda, // Revista Investigacion Operacional Vol 21, No 2, 2000. // Original sources referenced in the above are: // "Some Approximations to the Percentage Points of the Noncentral // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31. // "Continuous Univariate Distributions". N.L. Johnson, S. Kotz and // N. Balkrishnan. 1995. John Wiley and Sons New York. return pdf(students_t_distribution(n), t - delta); } // // x and y are the corresponding random // variables for the noncentral beta distribution, // with y = 1 - x: // T x = t * t / (n + t * t); T y = n / (n + t * t); T a = 0.5f; T b = n / 2; T d2 = delta * delta; // // Calculate pdf: // T dt = n * t / (n * n + 2 * n * t * t + t * t * t * t); T result = non_central_beta_pdf(a, b, d2, x, y, pol); T tol = tools::epsilon() * result * 500; result = non_central_t2_pdf(n, delta, x, y, pol, result); if(result <= tol) result = 0; result *= dt; return result; } template T mean(T v, T delta, const Policy& pol) { if ((boost::math::isinf)(v)) { return delta; } BOOST_MATH_STD_USING if (v > 1 / boost::math::tools::epsilon() ) { //normal_distribution n(delta, 1); //return boost::math::mean(n); return delta; } else { return delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f), pol); } // Other moments use mean so using normal distribution is propagated. } template T variance(T v, T delta, const Policy& pol) { if ((boost::math::isinf)(v)) { return 1; } if (delta == 0) { // == Student's t return v / (v - 2); } T result = ((delta * delta + 1) * v) / (v - 2); T m = mean(v, delta, pol); result -= m * m; return result; } template T skewness(T v, T delta, const Policy& pol) { BOOST_MATH_STD_USING if ((boost::math::isinf)(v)) { return 0; } if(delta == 0) { // == Student's t return 0; } T mean = boost::math::detail::mean(v, delta, pol); T l2 = delta * delta; T var = ((l2 + 1) * v) / (v - 2) - mean * mean; T result = -2 * var; result += v * (l2 + 2 * v - 3) / ((v - 3) * (v - 2)); result *= mean; result /= pow(var, T(1.5f)); return result; } template T kurtosis_excess(T v, T delta, const Policy& pol) { BOOST_MATH_STD_USING if ((boost::math::isinf)(v)) { return 3; } if (delta == 0) { // == Student's t return 3; } T mean = boost::math::detail::mean(v, delta, pol); T l2 = delta * delta; T var = ((l2 + 1) * v) / (v - 2) - mean * mean; T result = -3 * var; result += v * (l2 * (v + 1) + 3 * (3 * v - 5)) / ((v - 3) * (v - 2)); result *= -mean * mean; result += v * v * (l2 * l2 + 6 * l2 + 3) / ((v - 4) * (v - 2)); result /= var * var; return result; } #if 0 // // This code is disabled, since there can be multiple answers to the // question, and it's not clear how to find the "right" one. // template struct t_degrees_of_freedom_finder { t_degrees_of_freedom_finder( RealType delta_, RealType x_, RealType p_, bool c) : delta(delta_), x(x_), p(p_), comp(c) {} RealType operator()(const RealType& v) { non_central_t_distribution d(v, delta); return comp ? p - cdf(complement(d, x)) : cdf(d, x) - p; } private: RealType delta; RealType x; RealType p; bool comp; }; template inline RealType find_t_degrees_of_freedom( RealType delta, RealType x, RealType p, RealType q, const Policy& pol) { const char* function = "non_central_t<%1%>::find_degrees_of_freedom"; if((p == 0) || (q == 0)) { // // Can't a thing if one of p and q is zero: // return policies::raise_evaluation_error(function, "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%", RealType(std::numeric_limits::quiet_NaN()), Policy()); } t_degrees_of_freedom_finder f(delta, x, p < q ? p : q, p < q ? false : true); tools::eps_tolerance tol(policies::digits()); boost::uintmax_t max_iter = policies::get_max_root_iterations(); // // Pick an initial guess: // RealType guess = 200; std::pair ir = tools::bracket_and_solve_root( f, guess, RealType(2), false, tol, max_iter, pol); RealType result = ir.first + (ir.second - ir.first) / 2; if(max_iter >= policies::get_max_root_iterations()) { return policies::raise_evaluation_error(function, "Unable to locate solution in a reasonable time:" " or there is no answer to problem. Current best guess is %1%", result, Policy()); } return result; } template struct t_non_centrality_finder { t_non_centrality_finder( RealType v_, RealType x_, RealType p_, bool c) : v(v_), x(x_), p(p_), comp(c) {} RealType operator()(const RealType& delta) { non_central_t_distribution d(v, delta); return comp ? p - cdf(complement(d, x)) : cdf(d, x) - p; } private: RealType v; RealType x; RealType p; bool comp; }; template inline RealType find_t_non_centrality( RealType v, RealType x, RealType p, RealType q, const Policy& pol) { const char* function = "non_central_t<%1%>::find_t_non_centrality"; if((p == 0) || (q == 0)) { // // Can't do a thing if one of p and q is zero: // return policies::raise_evaluation_error(function, "Can't find non-centrality parameter when the probability is 0 or 1, only possible answer is %1%", RealType(std::numeric_limits::quiet_NaN()), Policy()); } t_non_centrality_finder f(v, x, p < q ? p : q, p < q ? false : true); tools::eps_tolerance tol(policies::digits()); boost::uintmax_t max_iter = policies::get_max_root_iterations(); // // Pick an initial guess that we know is the right side of // zero: // RealType guess; if(f(0) < 0) guess = 1; else guess = -1; std::pair ir = tools::bracket_and_solve_root( f, guess, RealType(2), false, tol, max_iter, pol); RealType result = ir.first + (ir.second - ir.first) / 2; if(max_iter >= policies::get_max_root_iterations()) { return policies::raise_evaluation_error(function, "Unable to locate solution in a reasonable time:" " or there is no answer to problem. Current best guess is %1%", result, Policy()); } return result; } #endif } // namespace detail ====================================================================== template > class non_central_t_distribution { public: typedef RealType value_type; typedef Policy policy_type; non_central_t_distribution(RealType v_, RealType lambda) : v(v_), ncp(lambda) { const char* function = "boost::math::non_central_t_distribution<%1%>::non_central_t_distribution(%1%,%1%)"; RealType r; detail::check_df_gt0_to_inf( function, v, &r, Policy()); detail::check_finite( function, lambda, &r, Policy()); } // non_central_t_distribution constructor. RealType degrees_of_freedom() const { // Private data getter function. return v; } RealType non_centrality() const { // Private data getter function. return ncp; } #if 0 // // This code is disabled, since there can be multiple answers to the // question, and it's not clear how to find the "right" one. // static RealType find_degrees_of_freedom(RealType delta, RealType x, RealType p) { const char* function = "non_central_t<%1%>::find_degrees_of_freedom"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; value_type result = detail::find_t_degrees_of_freedom( static_cast(delta), static_cast(x), static_cast(p), static_cast(1-p), forwarding_policy()); return policies::checked_narrowing_cast( result, function); } template static RealType find_degrees_of_freedom(const complemented3_type& c) { const char* function = "non_central_t<%1%>::find_degrees_of_freedom"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; value_type result = detail::find_t_degrees_of_freedom( static_cast(c.dist), static_cast(c.param1), static_cast(1-c.param2), static_cast(c.param2), forwarding_policy()); return policies::checked_narrowing_cast( result, function); } static RealType find_non_centrality(RealType v, RealType x, RealType p) { const char* function = "non_central_t<%1%>::find_t_non_centrality"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; value_type result = detail::find_t_non_centrality( static_cast(v), static_cast(x), static_cast(p), static_cast(1-p), forwarding_policy()); return policies::checked_narrowing_cast( result, function); } template static RealType find_non_centrality(const complemented3_type& c) { const char* function = "non_central_t<%1%>::find_t_non_centrality"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; value_type result = detail::find_t_non_centrality( static_cast(c.dist), static_cast(c.param1), static_cast(1-c.param2), static_cast(c.param2), forwarding_policy()); return policies::checked_narrowing_cast( result, function); } #endif private: // Data member, initialized by constructor. RealType v; // degrees of freedom RealType ncp; // non-centrality parameter }; // template class non_central_t_distribution typedef non_central_t_distribution non_central_t; // Reserved name of type double. // Non-member functions to give properties of the distribution. template inline const std::pair range(const non_central_t_distribution& /* dist */) { // Range of permissible values for random variable k. using boost::math::tools::max_value; return std::pair(-max_value(), max_value()); } template inline const std::pair support(const non_central_t_distribution& /* dist */) { // Range of supported values for random variable k. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair(-max_value(), max_value()); } template inline RealType mode(const non_central_t_distribution& dist) { // mode. static const char* function = "mode(non_central_t_distribution<%1%> const&)"; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy())) return (RealType)r; BOOST_MATH_STD_USING RealType m = v < 3 ? 0 : detail::mean(v, l, Policy()); RealType var = v < 4 ? 1 : detail::variance(v, l, Policy()); return detail::generic_find_mode( dist, m, function, sqrt(var)); } template inline RealType mean(const non_central_t_distribution& dist) { BOOST_MATH_STD_USING const char* function = "mean(const non_central_t_distribution<%1%>&)"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy())) return (RealType)r; if(v <= 1) return policies::raise_domain_error( function, "The non-central t distribution has no defined mean for degrees of freedom <= 1: got v=%1%.", v, Policy()); // return l * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, RealType(0.5f)); return policies::checked_narrowing_cast( detail::mean(static_cast(v), static_cast(l), forwarding_policy()), function); } // mean template inline RealType variance(const non_central_t_distribution& dist) { // variance. const char* function = "variance(const non_central_t_distribution<%1%>&)"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; BOOST_MATH_STD_USING RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy())) return (RealType)r; if(v <= 2) return policies::raise_domain_error( function, "The non-central t distribution has no defined variance for degrees of freedom <= 2: got v=%1%.", v, Policy()); return policies::checked_narrowing_cast( detail::variance(static_cast(v), static_cast(l), forwarding_policy()), function); } // RealType standard_deviation(const non_central_t_distribution& dist) // standard_deviation provided by derived accessors. template inline RealType skewness(const non_central_t_distribution& dist) { // skewness = sqrt(l). const char* function = "skewness(const non_central_t_distribution<%1%>&)"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy())) return (RealType)r; if(v <= 3) return policies::raise_domain_error( function, "The non-central t distribution has no defined skewness for degrees of freedom <= 3: got v=%1%.", v, Policy());; return policies::checked_narrowing_cast( detail::skewness(static_cast(v), static_cast(l), forwarding_policy()), function); } template inline RealType kurtosis_excess(const non_central_t_distribution& dist) { const char* function = "kurtosis_excess(const non_central_t_distribution<%1%>&)"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy())) return (RealType)r; if(v <= 4) return policies::raise_domain_error( function, "The non-central t distribution has no defined kurtosis for degrees of freedom <= 4: got v=%1%.", v, Policy());; return policies::checked_narrowing_cast( detail::kurtosis_excess(static_cast(v), static_cast(l), forwarding_policy()), function); } // kurtosis_excess template inline RealType kurtosis(const non_central_t_distribution& dist) { return kurtosis_excess(dist) + 3; } template inline RealType pdf(const non_central_t_distribution& dist, const RealType& t) { // Probability Density/Mass Function. const char* function = "pdf(non_central_t_distribution<%1%>, %1%)"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy()) || !detail::check_x( function, t, &r, Policy())) return (RealType)r; return policies::checked_narrowing_cast( detail::non_central_t_pdf(static_cast(v), static_cast(l), static_cast(t), Policy()), function); } // pdf template RealType cdf(const non_central_t_distribution& dist, const RealType& x) { const char* function = "boost::math::cdf(non_central_t_distribution<%1%>&, %1%)"; // was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy()) || !detail::check_x( function, x, &r, Policy())) return (RealType)r; if ((boost::math::isinf)(v)) { // Infinite degrees of freedom, so use normal distribution located at delta. normal_distribution n(l, 1); cdf(n, x); //return cdf(normal_distribution(l, 1), x); } if(l == 0) { // NO non-centrality, so use Student's t instead. return cdf(students_t_distribution(v), x); } return policies::checked_narrowing_cast( detail::non_central_t_cdf( static_cast(v), static_cast(l), static_cast(x), false, Policy()), function); } // cdf template RealType cdf(const complemented2_type, RealType>& c) { // Complemented Cumulative Distribution Function // was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)"; const char* function = "boost::math::cdf(const complement(non_central_t_distribution<%1%>&), %1%)"; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; non_central_t_distribution const& dist = c.dist; RealType x = c.param; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); // aka delta RealType r; if(!detail::check_df_gt0_to_inf( function, v, &r, Policy()) || !detail::check_finite( function, l, &r, Policy()) || !detail::check_x( function, x, &r, Policy())) return (RealType)r; if ((boost::math::isinf)(v)) { // Infinite degrees of freedom, so use normal distribution located at delta. normal_distribution n(l, 1); return cdf(complement(n, x)); } if(l == 0) { // zero non-centrality so use Student's t distribution. return cdf(complement(students_t_distribution(v), x)); } return policies::checked_narrowing_cast( detail::non_central_t_cdf( static_cast(v), static_cast(l), static_cast(x), true, Policy()), function); } // ccdf template inline RealType quantile(const non_central_t_distribution& dist, const RealType& p) { // Quantile (or Percent Point) function. static const char* function = "quantile(const non_central_t_distribution<%1%>, %1%)"; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy()); } // quantile template inline RealType quantile(const complemented2_type, RealType>& c) { // Quantile (or Percent Point) function. static const char* function = "quantile(const complement(non_central_t_distribution<%1%>, %1%))"; non_central_t_distribution const& dist = c.dist; RealType q = c.param; RealType v = dist.degrees_of_freedom(); RealType l = dist.non_centrality(); return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy()); } // quantile complement. } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP