// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2011-2012 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2016-2020. // Modifications copyright (c) 2016-2020, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_SSF_HPP #define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_SSF_HPP #include #include #include #include #include #include #include #include #include //#include #include namespace boost { namespace geometry { namespace strategy { namespace side { #ifndef DOXYGEN_NO_DETAIL namespace detail { template int spherical_side_formula(T const& lambda1, T const& delta1, T const& lambda2, T const& delta2, T const& lambda, T const& delta) { // Create temporary points (vectors) on unit a sphere T const cos_delta1 = cos(delta1); T const c1x = cos_delta1 * cos(lambda1); T const c1y = cos_delta1 * sin(lambda1); T const c1z = sin(delta1); T const cos_delta2 = cos(delta2); T const c2x = cos_delta2 * cos(lambda2); T const c2y = cos_delta2 * sin(lambda2); T const c2z = sin(delta2); // (Third point is converted directly) T const cos_delta = cos(delta); // Apply the "Spherical Side Formula" as presented on my blog T const dist = (c1y * c2z - c1z * c2y) * cos_delta * cos(lambda) + (c1z * c2x - c1x * c2z) * cos_delta * sin(lambda) + (c1x * c2y - c1y * c2x) * sin(delta); T zero = T(); return math::equals(dist, zero) ? 0 : dist > zero ? 1 : -1; // dist < zero } } #endif // DOXYGEN_NO_DETAIL /*! \brief Check at which side of a Great Circle segment a point lies left of segment (> 0), right of segment (< 0), on segment (0) \ingroup strategies \tparam CalculationType \tparam_calculation */ template class spherical_side_formula { public : typedef spherical_tag cs_tag; typedef strategy::envelope::spherical envelope_strategy_type; static inline envelope_strategy_type get_envelope_strategy() { return envelope_strategy_type(); } typedef strategy::disjoint::segment_box_spherical disjoint_strategy_type; static inline disjoint_strategy_type get_disjoint_strategy() { return disjoint_strategy_type(); } typedef strategy::within::spherical_point_point equals_point_point_strategy_type; static inline equals_point_point_strategy_type get_equals_point_point_strategy() { return equals_point_point_strategy_type(); } template static inline int apply(P1 const& p1, P2 const& p2, P const& p) { typedef typename promote_floating_point < typename select_calculation_type_alt < CalculationType, P1, P2, P >::type >::type calculation_type; calculation_type const lambda1 = get_as_radian<0>(p1); calculation_type const delta1 = get_as_radian<1>(p1); calculation_type const lambda2 = get_as_radian<0>(p2); calculation_type const delta2 = get_as_radian<1>(p2); calculation_type const lambda = get_as_radian<0>(p); calculation_type const delta = get_as_radian<1>(p); return detail::spherical_side_formula(lambda1, delta1, lambda2, delta2, lambda, delta); } }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { /*template struct default_strategy { typedef spherical_side_formula type; };*/ template struct default_strategy { typedef spherical_side_formula type; }; template struct default_strategy { typedef spherical_side_formula type; }; } #endif }} // namespace strategy::side }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_SSF_HPP