// Boost.Geometry // Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland. // Copyright (c) 2016-2020, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP #define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace strategy { namespace intersection { // NOTE: // The coordinates of crossing IP may be calculated with small precision in some cases. // For double, near the equator noticed error ~1e-9 so far greater than // machine epsilon which is ~1e-16. This error is ~0.04m. // E.g. consider two cases, one near the origin and the second one rotated by 90 deg around Z or SN axis. // After the conversion from spherical degrees to cartesian 3d the following coordinates // are calculated: // for sph (-1 -1, 1 1) deg cart3d ys are -0.017449748351250485 and 0.017449748351250485 // for sph (89 -1, 91 1) deg cart3d xs are 0.017449748351250571 and -0.017449748351250450 // During the conversion degrees must first be converted to radians and then radians // are passed into trigonometric functions. The error may have several causes: // 1. Radians cannot represent exactly the same angles as degrees. // 2. Different longitudes are passed into sin() for x, corresponding to cos() for y, // and for different angle the error of the result may be different. // 3. These non-corresponding cartesian coordinates are used in calculation, // e.g. multiplied several times in cross and dot products. // If it was a problem this strategy could e.g. "normalize" longitudes before the conversion using the source units // by rotating the globe around Z axis, so moving longitudes always the same way towards the origin, // assuming this could help which is not clear. // For now, intersection points near the endpoints are checked explicitly if needed (if the IP is near the endpoint) // to generate precise result for them. Only the crossing (i) case may suffer from lower precision. template < typename CalcPolicy, typename CalculationType = void > struct ecef_segments { typedef spherical_tag cs_tag; typedef side::spherical_side_formula side_strategy_type; static inline side_strategy_type get_side_strategy() { return side_strategy_type(); } template struct point_in_geometry_strategy { typedef strategy::within::spherical_winding < typename point_type::type, typename point_type::type, CalculationType > type; }; template static inline typename point_in_geometry_strategy::type get_point_in_geometry_strategy() { typedef typename point_in_geometry_strategy < Geometry1, Geometry2 >::type strategy_type; return strategy_type(); } template struct area_strategy { typedef area::spherical < typename coordinate_type::type, CalculationType > type; }; template static inline typename area_strategy::type get_area_strategy() { typedef typename area_strategy::type strategy_type; return strategy_type(); } template struct distance_strategy { typedef distance::haversine < typename coordinate_type::type, CalculationType > type; }; template static inline typename distance_strategy::type get_distance_strategy() { typedef typename distance_strategy::type strategy_type; return strategy_type(); } typedef envelope::spherical envelope_strategy_type; static inline envelope_strategy_type get_envelope_strategy() { return envelope_strategy_type(); } typedef expand::spherical_segment expand_strategy_type; static inline expand_strategy_type get_expand_strategy() { return expand_strategy_type(); } typedef within::spherical_point_point point_in_point_strategy_type; static inline point_in_point_strategy_type get_point_in_point_strategy() { return point_in_point_strategy_type(); } typedef within::spherical_point_point equals_point_point_strategy_type; static inline equals_point_point_strategy_type get_equals_point_point_strategy() { return equals_point_point_strategy_type(); } typedef disjoint::spherical_box_box disjoint_box_box_strategy_type; static inline disjoint_box_box_strategy_type get_disjoint_box_box_strategy() { return disjoint_box_box_strategy_type(); } typedef disjoint::segment_box_spherical disjoint_segment_box_strategy_type; static inline disjoint_segment_box_strategy_type get_disjoint_segment_box_strategy() { return disjoint_segment_box_strategy_type(); } typedef covered_by::spherical_point_box disjoint_point_box_strategy_type; typedef covered_by::spherical_point_box covered_by_point_box_strategy_type; typedef within::spherical_point_box within_point_box_strategy_type; typedef envelope::spherical_box envelope_box_strategy_type; typedef expand::spherical_box expand_box_strategy_type; enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 }; // segment_intersection_info cannot outlive relate_ecef_segments template struct segment_intersection_info { segment_intersection_info(CalcPolicy const& calc) : calc_policy(calc) {} template void calculate(Point& point, Segment1 const& a, Segment2 const& b) const { if (ip_flag == ipi_inters) { // TODO: assign the rest of coordinates point = calc_policy.template from_cart3d(intersection_point); } else if (ip_flag == ipi_at_a1) { detail::assign_point_from_index<0>(a, point); } else if (ip_flag == ipi_at_a2) { detail::assign_point_from_index<1>(a, point); } else if (ip_flag == ipi_at_b1) { detail::assign_point_from_index<0>(b, point); } else // ip_flag == ipi_at_b2 { detail::assign_point_from_index<1>(b, point); } } Vector3d intersection_point; SegmentRatio robust_ra; SegmentRatio robust_rb; intersection_point_flag ip_flag; CalcPolicy const& calc_policy; }; // Relate segments a and b template < typename UniqueSubRange1, typename UniqueSubRange2, typename Policy > static inline typename Policy::return_type apply(UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q, Policy const&) { // For now create it using default constructor. In the future it could // be stored in strategy. However then apply() wouldn't be static and // all relops and setops would have to take the strategy or model. // Initialize explicitly to prevent compiler errors in case of PoD type CalcPolicy const calc_policy = CalcPolicy(); typedef typename UniqueSubRange1::point_type point1_type; typedef typename UniqueSubRange2::point_type point2_type; BOOST_CONCEPT_ASSERT( (concepts::ConstPoint) ); BOOST_CONCEPT_ASSERT( (concepts::ConstPoint) ); point1_type const& a1 = range_p.at(0); point1_type const& a2 = range_p.at(1); point2_type const& b1 = range_q.at(0); point2_type const& b2 = range_q.at(1); typedef model::referring_segment segment1_type; typedef model::referring_segment segment2_type; segment1_type const a(a1, a2); segment2_type const b(b1, b2); // TODO: check only 2 first coordinates here? bool a_is_point = equals_point_point(a1, a2); bool b_is_point = equals_point_point(b1, b2); if(a_is_point && b_is_point) { return equals_point_point(a1, b2) ? Policy::degenerate(a, true) : Policy::disjoint() ; } typedef typename select_calculation_type ::type calc_t; calc_t const c0 = 0; calc_t const c1 = 1; typedef model::point vec3d_t; vec3d_t const a1v = calc_policy.template to_cart3d(a1); vec3d_t const a2v = calc_policy.template to_cart3d(a2); vec3d_t const b1v = calc_policy.template to_cart3d(b1); vec3d_t const b2v = calc_policy.template to_cart3d(b2); bool degen_neq_coords = false; side_info sides; typename CalcPolicy::template plane plane2 = calc_policy.get_plane(b1v, b2v); calc_t dist_b1_b2 = 0; if (! b_is_point) { calculate_dist(b1v, b2v, plane2, dist_b1_b2); if (math::equals(dist_b1_b2, c0)) { degen_neq_coords = true; b_is_point = true; dist_b1_b2 = 0; } else { // not normalized normals, the same as in side strategy sides.set<0>(plane2.side_value(a1v), plane2.side_value(a2v)); if (sides.same<0>()) { // Both points are at same side of other segment, we can leave return Policy::disjoint(); } } } typename CalcPolicy::template plane plane1 = calc_policy.get_plane(a1v, a2v); calc_t dist_a1_a2 = 0; if (! a_is_point) { calculate_dist(a1v, a2v, plane1, dist_a1_a2); if (math::equals(dist_a1_a2, c0)) { degen_neq_coords = true; a_is_point = true; dist_a1_a2 = 0; } else { // not normalized normals, the same as in side strategy sides.set<1>(plane1.side_value(b1v), plane1.side_value(b2v)); if (sides.same<1>()) { // Both points are at same side of other segment, we can leave return Policy::disjoint(); } } } // NOTE: at this point the segments may still be disjoint calc_t len1 = 0; // point or opposite sides of a sphere/spheroid, assume point if (! a_is_point && ! detail::vec_normalize(plane1.normal, len1)) { a_is_point = true; if (sides.get<0, 0>() == 0 || sides.get<0, 1>() == 0) { sides.set<0>(0, 0); } } calc_t len2 = 0; if (! b_is_point && ! detail::vec_normalize(plane2.normal, len2)) { b_is_point = true; if (sides.get<1, 0>() == 0 || sides.get<1, 1>() == 0) { sides.set<1>(0, 0); } } // check both degenerated once more if (a_is_point && b_is_point) { return equals_point_point(a1, b2) ? Policy::degenerate(a, true) : Policy::disjoint() ; } // NOTE: at this point the segments may still be disjoint // NOTE: at this point one of the segments may be degenerated bool collinear = sides.collinear(); if (! collinear) { // NOTE: for some approximations it's possible that both points may lie // on the same geodesic but still some of the sides may be != 0. // This is e.g. true for long segments represented as elliptic arcs // with origin different than the center of the coordinate system. // So make the sides consistent // WARNING: the side strategy doesn't have the info about the other // segment so it may return results inconsistent with this intersection // strategy, as it checks both segments for consistency if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0) { collinear = true; sides.set<1>(0, 0); } else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0) { collinear = true; sides.set<0>(0, 0); } } calc_t dot_n1n2 = dot_product(plane1.normal, plane2.normal); // NOTE: this is technically not needed since theoretically above sides // are calculated, but just in case check the normals. // Have in mind that SSF side strategy doesn't check this. // collinear if normals are equal or opposite: cos(a) in {-1, 1} if (! collinear && math::equals(math::abs(dot_n1n2), c1)) { collinear = true; sides.set<0>(0, 0); sides.set<1>(0, 0); } if (collinear) { if (a_is_point) { return collinear_one_degenerated(a, true, b1, b2, a1, a2, b1v, b2v, plane2, a1v, a2v, dist_b1_b2, degen_neq_coords); } else if (b_is_point) { // b2 used to be consistent with (degenerated) checks above (is it needed?) return collinear_one_degenerated(b, false, a1, a2, b1, b2, a1v, a2v, plane1, b1v, b2v, dist_a1_a2, degen_neq_coords); } else { calc_t dist_a1_b1, dist_a1_b2; calc_t dist_b1_a1, dist_b1_a2; calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane1, b1v, b2v, dist_a1_a2, dist_a1_b1); calculate_collinear_data(a1, a2, b2, b1, a1v, a2v, plane1, b2v, b1v, dist_a1_a2, dist_a1_b2); calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, plane2, a1v, a2v, dist_b1_b2, dist_b1_a1); calculate_collinear_data(b1, b2, a2, a1, b1v, b2v, plane2, a2v, a1v, dist_b1_b2, dist_b1_a2); // NOTE: The following optimization causes problems with consitency // It may either be caused by numerical issues or the way how distance is coded: // as cosine of angle scaled and translated, see: calculate_dist() /*dist_b1_b2 = dist_a1_b2 - dist_a1_b1; dist_b1_a1 = -dist_a1_b1; dist_b1_a2 = dist_a1_a2 - dist_a1_b1; dist_a1_a2 = dist_b1_a2 - dist_b1_a1; dist_a1_b1 = -dist_b1_a1; dist_a1_b2 = dist_b1_b2 - dist_b1_a1;*/ segment_ratio ra_from(dist_b1_a1, dist_b1_b2); segment_ratio ra_to(dist_b1_a2, dist_b1_b2); segment_ratio rb_from(dist_a1_b1, dist_a1_a2); segment_ratio rb_to(dist_a1_b2, dist_a1_a2); // NOTE: this is probably not needed int const a1_wrt_b = position_value(c0, dist_a1_b1, dist_a1_b2); int const a2_wrt_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2); int const b1_wrt_a = position_value(c0, dist_b1_a1, dist_b1_a2); int const b2_wrt_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2); if (a1_wrt_b == 1) { ra_from.assign(0, dist_b1_b2); rb_from.assign(0, dist_a1_a2); } else if (a1_wrt_b == 3) { ra_from.assign(dist_b1_b2, dist_b1_b2); rb_to.assign(0, dist_a1_a2); } if (a2_wrt_b == 1) { ra_to.assign(0, dist_b1_b2); rb_from.assign(dist_a1_a2, dist_a1_a2); } else if (a2_wrt_b == 3) { ra_to.assign(dist_b1_b2, dist_b1_b2); rb_to.assign(dist_a1_a2, dist_a1_a2); } if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3)) { return Policy::disjoint(); } bool const opposite = dot_n1n2 < c0; return Policy::segments_collinear(a, b, opposite, a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a, ra_from, ra_to, rb_from, rb_to); } } else // crossing { if (a_is_point || b_is_point) { return Policy::disjoint(); } vec3d_t i1; intersection_point_flag ip_flag; calc_t dist_a1_i1, dist_b1_i1; if (calculate_ip_data(a1, a2, b1, b2, a1v, a2v, b1v, b2v, plane1, plane2, calc_policy, sides, dist_a1_a2, dist_b1_b2, i1, dist_a1_i1, dist_b1_i1, ip_flag)) { // intersects segment_intersection_info < calc_t, segment_ratio, vec3d_t > sinfo(calc_policy); sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2); sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2); sinfo.intersection_point = i1; sinfo.ip_flag = ip_flag; return Policy::segments_crosses(sides, sinfo, a, b); } else { return Policy::disjoint(); } } } private: template static inline typename Policy::return_type collinear_one_degenerated(Segment const& segment, bool degenerated_a, Point1 const& a1, Point1 const& a2, Point2 const& b1, Point2 const& b2, Vec3d const& a1v, Vec3d const& a2v, Plane const& plane, Vec3d const& b1v, Vec3d const& b2v, CalcT const& dist_1_2, bool degen_neq_coords) { CalcT dist_1_o; return ! calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane, b1v, b2v, dist_1_2, dist_1_o, degen_neq_coords) ? Policy::disjoint() : Policy::one_degenerate(segment, segment_ratio(dist_1_o, dist_1_2), degenerated_a); } template static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in Point2 const& b1, Point2 const& /*b2*/, // in Vec3d const& a1v, // in Vec3d const& a2v, // in Plane const& plane1, // in Vec3d const& b1v, // in Vec3d const& b2v, // in CalcT const& dist_a1_a2, // in CalcT& dist_a1_b1, // out bool degen_neq_coords = false) // in { // calculate dist_a1_b1 calculate_dist(a1v, a2v, plane1, b1v, dist_a1_b1); // if b1 is equal to a1 if (is_endpoint_equal(dist_a1_b1, a1, b1)) { dist_a1_b1 = 0; return true; } // or b1 is equal to a2 else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1)) { dist_a1_b1 = dist_a1_a2; return true; } // check the other endpoint of degenerated segment near a pole if (degen_neq_coords) { static CalcT const c0 = 0; CalcT dist_a1_b2 = 0; calculate_dist(a1v, a2v, plane1, b2v, dist_a1_b2); if (math::equals(dist_a1_b2, c0)) { dist_a1_b1 = 0; return true; } else if (math::equals(dist_a1_a2 - dist_a1_b2, c0)) { dist_a1_b1 = dist_a1_a2; return true; } } // or i1 is on b return segment_ratio(dist_a1_b1, dist_a1_a2).on_segment(); } template static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in Point2 const& b1, Point2 const& b2, // in Vec3d const& a1v, Vec3d const& a2v, // in Vec3d const& b1v, Vec3d const& b2v, // in Plane const& plane1, // in Plane const& plane2, // in CalcPolicy const& calc_policy, // in side_info const& sides, // in CalcT const& dist_a1_a2, // in CalcT const& dist_b1_b2, // in Vec3d & ip, // out CalcT& dist_a1_ip, // out CalcT& dist_b1_ip, // out intersection_point_flag& ip_flag) // out { Vec3d ip1, ip2; calc_policy.intersection_points(plane1, plane2, ip1, ip2); calculate_dist(a1v, a2v, plane1, ip1, dist_a1_ip); ip = ip1; // choose the opposite side of the globe if the distance is shorter { CalcT const d = abs_distance(dist_a1_a2, dist_a1_ip); if (d > CalcT(0)) { // TODO: this should be ok not only for sphere // but requires more investigation CalcT const dist_a1_i2 = dist_of_i2(dist_a1_ip); CalcT const d2 = abs_distance(dist_a1_a2, dist_a1_i2); if (d2 < d) { dist_a1_ip = dist_a1_i2; ip = ip2; } } } bool is_on_a = false, is_near_a1 = false, is_near_a2 = false; if (! is_potentially_crossing(dist_a1_a2, dist_a1_ip, is_on_a, is_near_a1, is_near_a2)) { return false; } calculate_dist(b1v, b2v, plane2, ip, dist_b1_ip); bool is_on_b = false, is_near_b1 = false, is_near_b2 = false; if (! is_potentially_crossing(dist_b1_b2, dist_b1_ip, is_on_b, is_near_b1, is_near_b2)) { return false; } // reassign the IP if some endpoints overlap if (is_near_a1) { if (is_near_b1 && equals_point_point(a1, b1)) { dist_a1_ip = 0; dist_b1_ip = 0; //i1 = a1v; ip_flag = ipi_at_a1; return true; } if (is_near_b2 && equals_point_point(a1, b2)) { dist_a1_ip = 0; dist_b1_ip = dist_b1_b2; //i1 = a1v; ip_flag = ipi_at_a1; return true; } } if (is_near_a2) { if (is_near_b1 && equals_point_point(a2, b1)) { dist_a1_ip = dist_a1_a2; dist_b1_ip = 0; //i1 = a2v; ip_flag = ipi_at_a2; return true; } if (is_near_b2 && equals_point_point(a2, b2)) { dist_a1_ip = dist_a1_a2; dist_b1_ip = dist_b1_b2; //i1 = a2v; ip_flag = ipi_at_a2; return true; } } // at this point we know that the endpoints doesn't overlap // reassign IP and distance if the IP is on a segment and one of // the endpoints of the other segment lies on the former segment if (is_on_a) { if (is_near_b1 && sides.template get<1, 0>() == 0) // b1 wrt a { calculate_dist(a1v, a2v, plane1, b1v, dist_a1_ip); // for consistency dist_b1_ip = 0; //i1 = b1v; ip_flag = ipi_at_b1; return true; } if (is_near_b2 && sides.template get<1, 1>() == 0) // b2 wrt a { calculate_dist(a1v, a2v, plane1, b2v, dist_a1_ip); // for consistency dist_b1_ip = dist_b1_b2; //i1 = b2v; ip_flag = ipi_at_b2; return true; } } if (is_on_b) { if (is_near_a1 && sides.template get<0, 0>() == 0) // a1 wrt b { dist_a1_ip = 0; calculate_dist(b1v, b2v, plane2, a1v, dist_b1_ip); // for consistency //i1 = a1v; ip_flag = ipi_at_a1; return true; } if (is_near_a2 && sides.template get<0, 1>() == 0) // a2 wrt b { dist_a1_ip = dist_a1_a2; calculate_dist(b1v, b2v, plane2, a2v, dist_b1_ip); // for consistency //i1 = a2v; ip_flag = ipi_at_a2; return true; } } ip_flag = ipi_inters; return is_on_a && is_on_b; } template static inline void calculate_dist(Vec3d const& a1v, // in Vec3d const& a2v, // in Plane const& plane1, // in CalcT& dist_a1_a2) // out { static CalcT const c1 = 1; CalcT const cos_a1_a2 = plane1.cos_angle_between(a1v, a2v); dist_a1_a2 = -cos_a1_a2 + c1; // [1, -1] -> [0, 2] representing [0, pi] } template static inline void calculate_dist(Vec3d const& a1v, // in Vec3d const& /*a2v*/, // in Plane const& plane1, // in Vec3d const& i1, // in CalcT& dist_a1_i1) // out { static CalcT const c1 = 1; static CalcT const c2 = 2; static CalcT const c4 = 4; bool is_forward = true; CalcT cos_a1_i1 = plane1.cos_angle_between(a1v, i1, is_forward); dist_a1_i1 = -cos_a1_i1 + c1; // [0, 2] representing [0, pi] if (! is_forward) // left or right of a1 on a { dist_a1_i1 = -dist_a1_i1; // [0, 2] -> [0, -2] representing [0, -pi] } if (dist_a1_i1 <= -c2) // <= -pi { dist_a1_i1 += c4; // += 2pi } } /* template static inline void calculate_dists(Vec3d const& a1v, // in Vec3d const& a2v, // in Plane const& plane1, // in Vec3d const& i1, // in CalcT& dist_a1_a2, // out CalcT& dist_a1_i1) // out { calculate_dist(a1v, a2v, plane1, dist_a1_a2); calculate_dist(a1v, a2v, plane1, i1, dist_a1_i1); } */ // the dist of the ip on the other side of the sphere template static inline CalcT dist_of_i2(CalcT const& dist_a1_i1) { CalcT const c2 = 2; CalcT const c4 = 4; CalcT dist_a1_i2 = dist_a1_i1 - c2; // dist_a1_i2 = dist_a1_i1 - pi; if (dist_a1_i2 <= -c2) // <= -pi { dist_a1_i2 += c4; // += 2pi; } return dist_a1_i2; } template static inline CalcT abs_distance(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1) { if (dist_a1_i1 < CalcT(0)) return -dist_a1_i1; else if (dist_a1_i1 > dist_a1_a2) return dist_a1_i1 - dist_a1_a2; else return CalcT(0); } template static inline bool is_potentially_crossing(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1, // in bool& is_on_a, bool& is_near_a1, bool& is_near_a2) // out { is_on_a = segment_ratio(dist_a1_i1, dist_a1_a2).on_segment(); is_near_a1 = is_near(dist_a1_i1); is_near_a2 = is_near(dist_a1_a2 - dist_a1_i1); return is_on_a || is_near_a1 || is_near_a2; } template static inline bool is_endpoint_equal(CalcT const& dist, P1 const& ai, P2 const& b1) { static CalcT const c0 = 0; return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1)); } template static inline bool is_near(CalcT const& dist) { CalcT const small_number = CalcT(std::is_same::value ? 0.0001 : 0.00000001); return math::abs(dist) <= small_number; } template static inline int position_value(ProjCoord1 const& ca1, ProjCoord2 const& cb1, ProjCoord2 const& cb2) { // S1x 0 1 2 3 4 // S2 |----------> return math::equals(ca1, cb1) ? 1 : math::equals(ca1, cb2) ? 3 : cb1 < cb2 ? ( ca1 < cb1 ? 0 : ca1 > cb2 ? 4 : 2 ) : ( ca1 > cb1 ? 0 : ca1 < cb2 ? 4 : 2 ); } template static inline bool equals_point_point(Point1 const& point1, Point2 const& point2) { return strategy::within::spherical_point_point::apply(point1, point2); } }; struct spherical_segments_calc_policy { template static Point from_cart3d(Point3d const& point_3d) { return formula::cart3d_to_sph(point_3d); } template static Point3d to_cart3d(Point const& point) { return formula::sph_to_cart3d(point); } template struct plane { typedef typename coordinate_type::type coord_t; // not normalized plane(Point3d const& p1, Point3d const& p2) : normal(cross_product(p1, p2)) {} int side_value(Point3d const& pt) const { return formula::sph_side_value(normal, pt); } static coord_t cos_angle_between(Point3d const& p1, Point3d const& p2) { return dot_product(p1, p2); } coord_t cos_angle_between(Point3d const& p1, Point3d const& p2, bool & is_forward) const { coord_t const c0 = 0; is_forward = dot_product(normal, cross_product(p1, p2)) >= c0; return dot_product(p1, p2); } Point3d normal; }; template static plane get_plane(Point3d const& p1, Point3d const& p2) { return plane(p1, p2); } template static bool intersection_points(plane const& plane1, plane const& plane2, Point3d & ip1, Point3d & ip2) { typedef typename coordinate_type::type coord_t; ip1 = cross_product(plane1.normal, plane2.normal); // NOTE: the length should be greater than 0 at this point // if the normals were not normalized and their dot product // not checked before this function is called the length // should be checked here (math::equals(len, c0)) coord_t const len = math::sqrt(dot_product(ip1, ip1)); divide_value(ip1, len); // normalize i1 ip2 = ip1; multiply_value(ip2, coord_t(-1)); return true; } }; template < typename CalculationType = void > struct spherical_segments : ecef_segments < spherical_segments_calc_policy, CalculationType > {}; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { /*template struct default_strategy { typedef spherical_segments type; };*/ template struct default_strategy { typedef spherical_segments type; }; template struct default_strategy { // NOTE: Spherical strategy returns the same result as the geographic one // representing segments as great elliptic arcs. If the elliptic arcs are // not great elliptic arcs (the origin not in the center of the coordinate // system) then there may be problems with consistency of the side and // intersection strategies. typedef spherical_segments type; }; } // namespace services #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS }} // namespace strategy::intersection namespace strategy { namespace within { namespace services { template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; }} // within::services namespace covered_by { namespace services { template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; template struct default_strategy { typedef strategy::intersection::spherical_segments<> type; }; }} // within::services } // strategy }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP