// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GRAPH_ISOMORPHISM_HPP #define BOOST_GRAPH_ISOMORPHISM_HPP #include #include #include #include #include #include #include #include #include #include // for make_indirect_pmap #include #ifndef BOOST_GRAPH_ITERATION_MACROS_HPP #define BOOST_ISO_INCLUDED_ITER_MACROS // local macro, see bottom of file #include #endif namespace boost { namespace detail { template < typename Graph1, typename Graph2, typename IsoMapping, typename Invariant1, typename Invariant2, typename IndexMap1, typename IndexMap2 > class isomorphism_algo { typedef typename graph_traits< Graph1 >::vertex_descriptor vertex1_t; typedef typename graph_traits< Graph2 >::vertex_descriptor vertex2_t; typedef typename graph_traits< Graph1 >::edge_descriptor edge1_t; typedef typename graph_traits< Graph1 >::vertices_size_type size_type; typedef typename Invariant1::result_type invar1_value; typedef typename Invariant2::result_type invar2_value; const Graph1& G1; const Graph2& G2; IsoMapping f; Invariant1 invariant1; Invariant2 invariant2; std::size_t max_invariant; IndexMap1 index_map1; IndexMap2 index_map2; std::vector< vertex1_t > dfs_vertices; typedef typename std::vector< vertex1_t >::iterator vertex_iter; std::vector< int > dfs_num_vec; typedef safe_iterator_property_map< typename std::vector< int >::iterator, IndexMap1 #ifdef BOOST_NO_STD_ITERATOR_TRAITS , int, int& #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ > DFSNumMap; DFSNumMap dfs_num; std::vector< edge1_t > ordered_edges; typedef typename std::vector< edge1_t >::iterator edge_iter; std::vector< char > in_S_vec; typedef safe_iterator_property_map< typename std::vector< char >::iterator, IndexMap2 #ifdef BOOST_NO_STD_ITERATOR_TRAITS , char, char& #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ > InSMap; InSMap in_S; int num_edges_on_k; friend struct compare_multiplicity; struct compare_multiplicity { compare_multiplicity(Invariant1 invariant1, size_type* multiplicity) : invariant1(invariant1), multiplicity(multiplicity) { } bool operator()(const vertex1_t& x, const vertex1_t& y) const { return multiplicity[invariant1(x)] < multiplicity[invariant1(y)]; } Invariant1 invariant1; size_type* multiplicity; }; struct record_dfs_order : default_dfs_visitor { record_dfs_order( std::vector< vertex1_t >& v, std::vector< edge1_t >& e) : vertices(v), edges(e) { } void discover_vertex(vertex1_t v, const Graph1&) const { vertices.push_back(v); } void examine_edge(edge1_t e, const Graph1&) const { edges.push_back(e); } std::vector< vertex1_t >& vertices; std::vector< edge1_t >& edges; }; struct edge_cmp { edge_cmp(const Graph1& G1, DFSNumMap dfs_num) : G1(G1), dfs_num(dfs_num) { } bool operator()(const edge1_t& e1, const edge1_t& e2) const { using namespace std; int u1 = dfs_num[source(e1, G1)], v1 = dfs_num[target(e1, G1)]; int u2 = dfs_num[source(e2, G1)], v2 = dfs_num[target(e2, G1)]; int m1 = (max)(u1, v1); int m2 = (max)(u2, v2); // lexicographical comparison return std::make_pair(m1, std::make_pair(u1, v1)) < std::make_pair(m2, std::make_pair(u2, v2)); } const Graph1& G1; DFSNumMap dfs_num; }; public: isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f, Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant, IndexMap1 index_map1, IndexMap2 index_map2) : G1(G1) , G2(G2) , f(f) , invariant1(invariant1) , invariant2(invariant2) , max_invariant(max_invariant) , index_map1(index_map1) , index_map2(index_map2) { in_S_vec.resize(num_vertices(G1)); in_S = make_safe_iterator_property_map( in_S_vec.begin(), in_S_vec.size(), index_map2 #ifdef BOOST_NO_STD_ITERATOR_TRAITS , in_S_vec.front() #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ ); } bool test_isomorphism() { // reset isomapping BGL_FORALL_VERTICES_T(v, G1, Graph1) f[v] = graph_traits< Graph2 >::null_vertex(); { std::vector< invar1_value > invar1_array; BGL_FORALL_VERTICES_T(v, G1, Graph1) invar1_array.push_back(invariant1(v)); sort(invar1_array); std::vector< invar2_value > invar2_array; BGL_FORALL_VERTICES_T(v, G2, Graph2) invar2_array.push_back(invariant2(v)); sort(invar2_array); if (!equal(invar1_array, invar2_array)) return false; } std::vector< vertex1_t > V_mult; BGL_FORALL_VERTICES_T(v, G1, Graph1) V_mult.push_back(v); { std::vector< size_type > multiplicity(max_invariant, 0); BGL_FORALL_VERTICES_T(v, G1, Graph1) ++multiplicity.at(invariant1(v)); sort( V_mult, compare_multiplicity(invariant1, &multiplicity[0])); } std::vector< default_color_type > color_vec(num_vertices(G1)); safe_iterator_property_map< std::vector< default_color_type >::iterator, IndexMap1 #ifdef BOOST_NO_STD_ITERATOR_TRAITS , default_color_type, default_color_type& #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ > color_map(color_vec.begin(), color_vec.size(), index_map1); record_dfs_order dfs_visitor(dfs_vertices, ordered_edges); typedef color_traits< default_color_type > Color; for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) { if (color_map[*u] == Color::white()) { dfs_visitor.start_vertex(*u, G1); depth_first_visit(G1, *u, dfs_visitor, color_map); } } // Create the dfs_num array and dfs_num_map dfs_num_vec.resize(num_vertices(G1)); dfs_num = make_safe_iterator_property_map( dfs_num_vec.begin(), dfs_num_vec.size(), index_map1 #ifdef BOOST_NO_STD_ITERATOR_TRAITS , dfs_num_vec.front() #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ ); size_type n = 0; for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v) dfs_num[*v] = n++; sort(ordered_edges, edge_cmp(G1, dfs_num)); int dfs_num_k = -1; return this->match(ordered_edges.begin(), dfs_num_k); } private: struct match_continuation { enum { pos_G2_vertex_loop, pos_fi_adj_loop, pos_dfs_num } position; typedef typename graph_traits< Graph2 >::vertex_iterator vertex_iterator; std::pair< vertex_iterator, vertex_iterator > G2_verts; typedef typename graph_traits< Graph2 >::adjacency_iterator adjacency_iterator; std::pair< adjacency_iterator, adjacency_iterator > fi_adj; edge_iter iter; int dfs_num_k; }; bool match(edge_iter iter, int dfs_num_k) { std::vector< match_continuation > k; typedef typename graph_traits< Graph2 >::vertex_iterator vertex_iterator; std::pair< vertex_iterator, vertex_iterator > G2_verts( vertices(G2)); typedef typename graph_traits< Graph2 >::adjacency_iterator adjacency_iterator; std::pair< adjacency_iterator, adjacency_iterator > fi_adj; vertex1_t i, j; recur: if (iter != ordered_edges.end()) { i = source(*iter, G1); j = target(*iter, G1); if (dfs_num[i] > dfs_num_k) { G2_verts = vertices(G2); while (G2_verts.first != G2_verts.second) { { vertex2_t u = *G2_verts.first; vertex1_t kp1 = dfs_vertices[dfs_num_k + 1]; if (invariant1(kp1) == invariant2(u) && in_S[u] == false) { { f[kp1] = u; in_S[u] = true; num_edges_on_k = 0; match_continuation new_k; new_k.position = match_continuation:: pos_G2_vertex_loop; new_k.G2_verts = G2_verts; new_k.iter = iter; new_k.dfs_num_k = dfs_num_k; k.push_back(new_k); ++dfs_num_k; goto recur; } } } G2_loop_k: ++G2_verts.first; } } else if (dfs_num[j] > dfs_num_k) { { vertex1_t vk = dfs_vertices[dfs_num_k]; num_edges_on_k -= count_if(adjacent_vertices(f[vk], G2), make_indirect_pmap(in_S)); for (int jj = 0; jj < dfs_num_k; ++jj) { vertex1_t j = dfs_vertices[jj]; num_edges_on_k -= count(adjacent_vertices(f[j], G2), f[vk]); } } if (num_edges_on_k != 0) goto return_point_false; fi_adj = adjacent_vertices(f[i], G2); while (fi_adj.first != fi_adj.second) { { vertex2_t v = *fi_adj.first; if (invariant2(v) == invariant1(j) && in_S[v] == false) { f[j] = v; in_S[v] = true; num_edges_on_k = 1; BOOST_USING_STD_MAX(); int next_k = max BOOST_PREVENT_MACRO_SUBSTITUTION( dfs_num_k, max BOOST_PREVENT_MACRO_SUBSTITUTION( dfs_num[i], dfs_num[j])); match_continuation new_k; new_k.position = match_continuation::pos_fi_adj_loop; new_k.fi_adj = fi_adj; new_k.iter = iter; new_k.dfs_num_k = dfs_num_k; ++iter; dfs_num_k = next_k; k.push_back(new_k); goto recur; } } fi_adj_loop_k: ++fi_adj.first; } } else { if (container_contains(adjacent_vertices(f[i], G2), f[j])) { ++num_edges_on_k; match_continuation new_k; new_k.position = match_continuation::pos_dfs_num; k.push_back(new_k); ++iter; goto recur; } } } else goto return_point_true; goto return_point_false; { return_point_true: return true; return_point_false: if (k.empty()) return false; const match_continuation& this_k = k.back(); switch (this_k.position) { case match_continuation::pos_G2_vertex_loop: { G2_verts = this_k.G2_verts; iter = this_k.iter; dfs_num_k = this_k.dfs_num_k; k.pop_back(); in_S[*G2_verts.first] = false; i = source(*iter, G1); j = target(*iter, G1); goto G2_loop_k; } case match_continuation::pos_fi_adj_loop: { fi_adj = this_k.fi_adj; iter = this_k.iter; dfs_num_k = this_k.dfs_num_k; k.pop_back(); in_S[*fi_adj.first] = false; i = source(*iter, G1); j = target(*iter, G1); goto fi_adj_loop_k; } case match_continuation::pos_dfs_num: { k.pop_back(); goto return_point_false; } default: { BOOST_ASSERT(!"Bad position"); #ifdef UNDER_CE exit(-1); #else abort(); #endif } } } } }; template < typename Graph, typename InDegreeMap > void compute_in_degree(const Graph& g, InDegreeMap in_degree_map) { BGL_FORALL_VERTICES_T(v, g, Graph) put(in_degree_map, v, 0); BGL_FORALL_VERTICES_T(u, g, Graph) BGL_FORALL_ADJ_T(u, v, g, Graph) put(in_degree_map, v, get(in_degree_map, v) + 1); } } // namespace detail template < typename InDegreeMap, typename Graph > class degree_vertex_invariant { typedef typename graph_traits< Graph >::vertex_descriptor vertex_t; typedef typename graph_traits< Graph >::degree_size_type size_type; public: typedef vertex_t argument_type; typedef size_type result_type; degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g) : m_in_degree_map(in_degree_map) , m_max_vertex_in_degree(0) , m_max_vertex_out_degree(0) , m_g(g) { BGL_FORALL_VERTICES_T(v, g, Graph) { m_max_vertex_in_degree = (std::max)(m_max_vertex_in_degree, get(m_in_degree_map, v)); m_max_vertex_out_degree = (std::max)(m_max_vertex_out_degree, out_degree(v, g)); } } size_type operator()(vertex_t v) const { return (m_max_vertex_in_degree + 1) * out_degree(v, m_g) + get(m_in_degree_map, v); } // The largest possible vertex invariant number size_type max BOOST_PREVENT_MACRO_SUBSTITUTION() const { return (m_max_vertex_in_degree + 1) * (m_max_vertex_out_degree + 1); } private: InDegreeMap m_in_degree_map; size_type m_max_vertex_in_degree; size_type m_max_vertex_out_degree; const Graph& m_g; }; // Count actual number of vertices, even in filtered graphs. template < typename Graph > size_t count_vertices(const Graph& g) { size_t n = 0; BGL_FORALL_VERTICES_T(v, g, Graph) { (void)v; ++n; } return n; } template < typename Graph1, typename Graph2, typename IsoMapping, typename Invariant1, typename Invariant2, typename IndexMap1, typename IndexMap2 > bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f, Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant, IndexMap1 index_map1, IndexMap2 index_map2) { // Graph requirements BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph1 >)); BOOST_CONCEPT_ASSERT((EdgeListGraphConcept< Graph1 >)); BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph2 >)); // BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept )); typedef typename graph_traits< Graph1 >::vertex_descriptor vertex1_t; typedef typename graph_traits< Graph2 >::vertex_descriptor vertex2_t; typedef typename graph_traits< Graph1 >::vertices_size_type size_type; // Vertex invariant requirement BOOST_CONCEPT_ASSERT( (AdaptableUnaryFunctionConcept< Invariant1, size_type, vertex1_t >)); BOOST_CONCEPT_ASSERT( (AdaptableUnaryFunctionConcept< Invariant2, size_type, vertex2_t >)); // Property map requirements BOOST_CONCEPT_ASSERT( (ReadWritePropertyMapConcept< IsoMapping, vertex1_t >)); typedef typename property_traits< IsoMapping >::value_type IsoMappingValue; BOOST_STATIC_ASSERT((is_convertible< IsoMappingValue, vertex2_t >::value)); BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept< IndexMap1, vertex1_t >)); typedef typename property_traits< IndexMap1 >::value_type IndexMap1Value; BOOST_STATIC_ASSERT((is_convertible< IndexMap1Value, size_type >::value)); BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept< IndexMap2, vertex2_t >)); typedef typename property_traits< IndexMap2 >::value_type IndexMap2Value; BOOST_STATIC_ASSERT((is_convertible< IndexMap2Value, size_type >::value)); if (count_vertices(G1) != count_vertices(G2)) return false; if (count_vertices(G1) == 0 && count_vertices(G2) == 0) return true; detail::isomorphism_algo< Graph1, Graph2, IsoMapping, Invariant1, Invariant2, IndexMap1, IndexMap2 > algo(G1, G2, f, invariant1, invariant2, max_invariant, index_map1, index_map2); return algo.test_isomorphism(); } namespace detail { template < typename Graph1, typename Graph2, typename IsoMapping, typename IndexMap1, typename IndexMap2, typename P, typename T, typename R > bool isomorphism_impl(const Graph1& G1, const Graph2& G2, IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2, const bgl_named_params< P, T, R >& params) { std::vector< std::size_t > in_degree1_vec(num_vertices(G1)); typedef safe_iterator_property_map< std::vector< std::size_t >::iterator, IndexMap1 #ifdef BOOST_NO_STD_ITERATOR_TRAITS , std::size_t, std::size_t& #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ > InDeg1; InDeg1 in_degree1( in_degree1_vec.begin(), in_degree1_vec.size(), index_map1); compute_in_degree(G1, in_degree1); std::vector< std::size_t > in_degree2_vec(num_vertices(G2)); typedef safe_iterator_property_map< std::vector< std::size_t >::iterator, IndexMap2 #ifdef BOOST_NO_STD_ITERATOR_TRAITS , std::size_t, std::size_t& #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ > InDeg2; InDeg2 in_degree2( in_degree2_vec.begin(), in_degree2_vec.size(), index_map2); compute_in_degree(G2, in_degree2); degree_vertex_invariant< InDeg1, Graph1 > invariant1(in_degree1, G1); degree_vertex_invariant< InDeg2, Graph2 > invariant2(in_degree2, G2); return isomorphism(G1, G2, f, choose_param(get_param(params, vertex_invariant1_t()), invariant1), choose_param(get_param(params, vertex_invariant2_t()), invariant2), choose_param(get_param(params, vertex_max_invariant_t()), (invariant2.max)()), index_map1, index_map2); } template < typename G, typename Index > struct make_degree_invariant { const G& g; const Index& index; make_degree_invariant(const G& g, const Index& index) : g(g), index(index) { } typedef typename boost::graph_traits< G >::degree_size_type degree_size_type; typedef shared_array_property_map< degree_size_type, Index > prop_map_type; typedef degree_vertex_invariant< prop_map_type, G > result_type; result_type operator()() const { prop_map_type pm = make_shared_array_property_map( num_vertices(g), degree_size_type(), index); compute_in_degree(g, pm); return result_type(pm, g); } }; } // namespace detail namespace graph { namespace detail { template < typename Graph1, typename Graph2 > struct isomorphism_impl { typedef bool result_type; typedef result_type type; template < typename ArgPack > bool operator()(const Graph1& g1, const Graph2& g2, const ArgPack& arg_pack) const { using namespace boost::graph::keywords; typedef typename boost::detail::override_const_property_result< ArgPack, tag::vertex_index1_map, boost::vertex_index_t, Graph1 >::type index1_map_type; typedef typename boost::detail::override_const_property_result< ArgPack, tag::vertex_index2_map, boost::vertex_index_t, Graph2 >::type index2_map_type; index1_map_type index1_map = boost::detail::override_const_property( arg_pack, _vertex_index1_map, g1, boost::vertex_index); index2_map_type index2_map = boost::detail::override_const_property( arg_pack, _vertex_index2_map, g2, boost::vertex_index); typedef typename graph_traits< Graph2 >::vertex_descriptor vertex2_t; typename std::vector< vertex2_t >::size_type n = (typename std::vector< vertex2_t >::size_type) num_vertices(g1); std::vector< vertex2_t > f(n); typename boost::parameter::lazy_binding< ArgPack, tag::vertex_invariant1, boost::detail::make_degree_invariant< Graph1, index1_map_type > >::type invariant1 = arg_pack[_vertex_invariant1 || boost::detail::make_degree_invariant< Graph1, index1_map_type >(g1, index1_map)]; typename boost::parameter::lazy_binding< ArgPack, tag::vertex_invariant2, boost::detail::make_degree_invariant< Graph2, index2_map_type > >::type invariant2 = arg_pack[_vertex_invariant2 || boost::detail::make_degree_invariant< Graph2, index2_map_type >(g2, index2_map)]; return boost::isomorphism(g1, g2, choose_param( arg_pack[_isomorphism_map | boost::param_not_found()], make_shared_array_property_map( num_vertices(g1), vertex2_t(), index1_map)), invariant1, invariant2, arg_pack[_vertex_max_invariant | (invariant2.max)()], index1_map, index2_map); } }; } BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(isomorphism, 2, 6) } // Named parameter interface BOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(isomorphism, 2) // Verify that the given mapping iso_map from the vertices of g1 to the // vertices of g2 describes an isomorphism. // Note: this could be made much faster by specializing based on the graph // concepts modeled, but since we're verifying an O(n^(lg n)) algorithm, // O(n^4) won't hurt us. template < typename Graph1, typename Graph2, typename IsoMap > inline bool verify_isomorphism( const Graph1& g1, const Graph2& g2, IsoMap iso_map) { #if 0 // problematic for filtered_graph! if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2)) return false; #endif BGL_FORALL_EDGES_T(e1, g1, Graph1) { bool found_edge = false; BGL_FORALL_EDGES_T(e2, g2, Graph2) { if (source(e2, g2) == get(iso_map, source(e1, g1)) && target(e2, g2) == get(iso_map, target(e1, g1))) { found_edge = true; } } if (!found_edge) return false; } return true; } } // namespace boost #ifdef BOOST_ISO_INCLUDED_ITER_MACROS #undef BOOST_ISO_INCLUDED_ITER_MACROS #include #endif #endif // BOOST_GRAPH_ISOMORPHISM_HPP