// boost heap: binomial heap // // Copyright (C) 2010 Tim Blechmann // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HEAP_BINOMIAL_HEAP_HPP #define BOOST_HEAP_BINOMIAL_HEAP_HPP #include #include #include #include #include #include #include #include #include #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif #ifndef BOOST_DOXYGEN_INVOKED #ifdef BOOST_HEAP_SANITYCHECKS #define BOOST_HEAP_ASSERT BOOST_ASSERT #else #define BOOST_HEAP_ASSERT(expression) #endif #endif namespace boost { namespace heap { namespace detail { typedef parameter::parameters, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional > binomial_heap_signature; template struct make_binomial_heap_base { static const bool constant_time_size = parameter::binding::type::value; typedef typename detail::make_heap_base::type base_type; typedef typename detail::make_heap_base::allocator_argument allocator_argument; typedef typename detail::make_heap_base::compare_argument compare_argument; typedef parent_pointing_heap_node node_type; typedef typename boost::allocator_rebind::type allocator_type; struct type: base_type, allocator_type { type(compare_argument const & arg): base_type(arg) {} #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES type(type const & rhs): base_type(rhs), allocator_type(rhs) {} type(type && rhs): base_type(std::move(static_cast(rhs))), allocator_type(std::move(static_cast(rhs))) {} type & operator=(type && rhs) { base_type::operator=(std::move(static_cast(rhs))); allocator_type::operator=(std::move(static_cast(rhs))); return *this; } type & operator=(type const & rhs) { base_type::operator=(static_cast(rhs)); allocator_type::operator=(static_cast(rhs)); return *this; } #endif }; }; } /** * \class binomial_heap * \brief binomial heap * * The template parameter T is the type to be managed by the container. * The user can specify additional options and if no options are provided default options are used. * * The container supports the following options: * - \c boost::heap::stable<>, defaults to \c stable * - \c boost::heap::compare<>, defaults to \c compare > * - \c boost::heap::allocator<>, defaults to \c allocator > * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type * */ #ifdef BOOST_DOXYGEN_INVOKED template #else template #endif class binomial_heap: private detail::make_binomial_heap_base::type >::type { typedef typename detail::binomial_heap_signature::bind::type bound_args; typedef detail::make_binomial_heap_base base_maker; typedef typename base_maker::type super_t; typedef typename super_t::internal_type internal_type; typedef typename super_t::size_holder_type size_holder; typedef typename super_t::stability_counter_type stability_counter_type; typedef typename base_maker::allocator_argument allocator_argument; template friend struct heap_merge_emulate; public: static const bool constant_time_size = super_t::constant_time_size; static const bool has_ordered_iterators = true; static const bool is_mergable = true; static const bool is_stable = detail::extract_stable::value; static const bool has_reserve = false; private: #ifndef BOOST_DOXYGEN_INVOKED struct implementation_defined: detail::extract_allocator_types { typedef T value_type; typedef typename detail::extract_allocator_types::size_type size_type; typedef typename detail::extract_allocator_types::reference reference; typedef typename base_maker::compare_argument value_compare; typedef typename base_maker::allocator_type allocator_type; typedef typename base_maker::node_type node; typedef typename boost::allocator_pointer::type node_pointer; typedef typename boost::allocator_const_pointer::type const_node_pointer; typedef detail::node_handle handle_type; typedef typename base_maker::node_type node_type; typedef boost::intrusive::list, boost::intrusive::constant_time_size > node_list_type; typedef typename node_list_type::iterator node_list_iterator; typedef typename node_list_type::const_iterator node_list_const_iterator; typedef detail::value_extractor value_extractor; typedef detail::recursive_tree_iterator > iterator; typedef iterator const_iterator; typedef detail::tree_iterator, true, true, value_compare > ordered_iterator; }; #endif public: typedef T value_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::allocator_type allocator_type; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; /// \copydoc boost::heap::priority_queue::iterator typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::ordered_iterator ordered_iterator; typedef typename implementation_defined::handle_type handle_type; private: typedef typename implementation_defined::node_type node_type; typedef typename implementation_defined::node_list_type node_list_type; typedef typename implementation_defined::node_pointer node_pointer; typedef typename implementation_defined::const_node_pointer const_node_pointer; typedef typename implementation_defined::node_list_iterator node_list_iterator; typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator; typedef typename super_t::internal_compare internal_compare; public: /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &) explicit binomial_heap(value_compare const & cmp = value_compare()): super_t(cmp), top_element(0) {} /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &) binomial_heap(binomial_heap const & rhs): super_t(rhs), top_element(0) { if (rhs.empty()) return; clone_forest(rhs); size_holder::set_size(rhs.get_size()); } /// \copydoc boost::heap::priority_queue::operator=(priority_queue const &) binomial_heap & operator=(binomial_heap const & rhs) { clear(); size_holder::set_size(rhs.get_size()); static_cast(*this) = rhs; if (rhs.empty()) top_element = NULL; else clone_forest(rhs); return *this; } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&) binomial_heap(binomial_heap && rhs): super_t(std::move(rhs)), top_element(rhs.top_element) { trees.splice(trees.begin(), rhs.trees); rhs.top_element = NULL; } /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&) binomial_heap & operator=(binomial_heap && rhs) { clear(); super_t::operator=(std::move(rhs)); trees.splice(trees.begin(), rhs.trees); top_element = rhs.top_element; rhs.top_element = NULL; return *this; } #endif ~binomial_heap(void) { clear(); } /// \copydoc boost::heap::priority_queue::empty bool empty(void) const { return top_element == NULL; } /** * \b Effects: Returns the number of elements contained in the priority queue. * * \b Complexity: Constant, if configured with constant_time_size, otherwise linear. * * */ size_type size(void) const { if (constant_time_size) return size_holder::get_size(); if (empty()) return 0; else return detail::count_list_nodes(trees); } /// \copydoc boost::heap::priority_queue::max_size size_type max_size(void) const { const allocator_type& alloc = *this; return boost::allocator_max_size(alloc); } /// \copydoc boost::heap::priority_queue::clear void clear(void) { typedef detail::node_disposer disposer; trees.clear_and_dispose(disposer(*this)); size_holder::set_size(0); top_element = NULL; } /// \copydoc boost::heap::priority_queue::get_allocator allocator_type get_allocator(void) const { return *this; } /// \copydoc boost::heap::priority_queue::swap void swap(binomial_heap & rhs) { super_t::swap(rhs); std::swap(top_element, rhs.top_element); trees.swap(rhs.trees); } /// \copydoc boost::heap::priority_queue::top const_reference top(void) const { BOOST_ASSERT(!empty()); return super_t::get_value(top_element->value); } /** * \b Effects: Adds a new element to the priority queue. Returns handle to element * * \b Complexity: Logarithmic. * * */ handle_type push(value_type const & v) { allocator_type& alloc = *this; node_pointer n = alloc.allocate(1); new(n) node_type(super_t::make_node(v)); insert_node(trees.begin(), n); if (!top_element || super_t::operator()(top_element->value, n->value)) top_element = n; size_holder::increment(); sanity_check(); return handle_type(n); } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) /** * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns handle to element. * * \b Complexity: Logarithmic. * * */ template handle_type emplace(Args&&... args) { allocator_type& alloc = *this; node_pointer n = alloc.allocate(1); new(n) node_type(super_t::make_node(std::forward(args)...)); insert_node(trees.begin(), n); if (!top_element || super_t::operator()(top_element->value, n->value)) top_element = n; size_holder::increment(); sanity_check(); return handle_type(n); } #endif /** * \b Effects: Removes the top element from the priority queue. * * \b Complexity: Logarithmic. * * */ void pop(void) { BOOST_ASSERT(!empty()); node_pointer element = top_element; trees.erase(node_list_type::s_iterator_to(*element)); size_holder::decrement(); if (element->child_count()) { size_type sz = (1 << element->child_count()) - 1; binomial_heap children(value_comp(), element->children, sz); if (trees.empty()) { stability_counter_type stability_count = super_t::get_stability_count(); size_t size = constant_time_size ? size_holder::get_size() : 0; swap(children); super_t::set_stability_count(stability_count); if (constant_time_size) size_holder::set_size( size ); } else merge_and_clear_nodes(children); } if (trees.empty()) top_element = NULL; else update_top_element(); element->~node_type(); allocator_type& alloc = *this; alloc.deallocate(element, 1); sanity_check(); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic. * * */ void update (handle_type handle, const_reference v) { if (super_t::operator()(super_t::get_value(handle.node_->value), v)) increase(handle, v); else decrease(handle, v); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void update (handle_type handle) { node_pointer this_node = handle.node_; if (this_node->parent) { if (super_t::operator()(super_t::get_value(this_node->parent->value), super_t::get_value(this_node->value))) increase(handle); else decrease(handle); } else decrease(handle); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be greater than the current one * */ void increase (handle_type handle, const_reference v) { handle.node_->value = super_t::make_node(v); increase(handle); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void increase (handle_type handle) { node_pointer n = handle.node_; siftup(n, *this); update_top_element(); sanity_check(); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be less than the current one * */ void decrease (handle_type handle, const_reference v) { handle.node_->value = super_t::make_node(v); decrease(handle); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void decrease (handle_type handle) { node_pointer n = handle.node_; siftdown(n); update_top_element(); } /** * \b Effects: Merge with priority queue rhs. * * \b Complexity: Logarithmic. * * */ void merge(binomial_heap & rhs) { if (rhs.empty()) return; if (empty()) { swap(rhs); return; } size_type new_size = size_holder::get_size() + rhs.get_size(); merge_and_clear_nodes(rhs); size_holder::set_size(new_size); rhs.set_size(0); rhs.top_element = NULL; super_t::set_stability_count((std::max)(super_t::get_stability_count(), rhs.get_stability_count())); rhs.set_stability_count(0); } public: /// \copydoc boost::heap::priority_queue::begin iterator begin(void) const { return iterator(trees.begin()); } /// \copydoc boost::heap::priority_queue::end iterator end(void) const { return iterator(trees.end()); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_begin(void) const { return ordered_iterator(trees.begin(), trees.end(), top_element, super_t::value_comp()); } /// \copydoc boost::heap::fibonacci_heap::ordered_end ordered_iterator ordered_end(void) const { return ordered_iterator(NULL, super_t::value_comp()); } /** * \b Effects: Removes the element handled by \c handle from the priority_queue. * * \b Complexity: Logarithmic. * */ void erase(handle_type handle) { node_pointer n = handle.node_; siftup(n, force_inf()); top_element = n; pop(); } /// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator static handle_type s_handle_from_iterator(iterator const & it) { node_type * ptr = const_cast(it.get_node()); return handle_type(ptr); } /// \copydoc boost::heap::priority_queue::value_comp value_compare const & value_comp(void) const { return super_t::value_comp(); } /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const template bool operator<(HeapType const & rhs) const { return detail::heap_compare(*this, rhs); } /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const template bool operator>(HeapType const & rhs) const { return detail::heap_compare(rhs, *this); } /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const template bool operator>=(HeapType const & rhs) const { return !operator<(rhs); } /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const template bool operator<=(HeapType const & rhs) const { return !operator>(rhs); } /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const template bool operator==(HeapType const & rhs) const { return detail::heap_equality(*this, rhs); } /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const template bool operator!=(HeapType const & rhs) const { return !(*this == rhs); } private: #if !defined(BOOST_DOXYGEN_INVOKED) void merge_and_clear_nodes(binomial_heap & rhs) { BOOST_HEAP_ASSERT (!empty()); BOOST_HEAP_ASSERT (!rhs.empty()); node_list_iterator this_iterator = trees.begin(); node_pointer carry_node = NULL; while (!rhs.trees.empty()) { node_pointer rhs_node = static_cast(&rhs.trees.front()); size_type rhs_degree = rhs_node->child_count(); if (super_t::operator()(top_element->value, rhs_node->value)) top_element = rhs_node; try_again: node_pointer this_node = static_cast(&*this_iterator); size_type this_degree = this_node->child_count(); sorted_by_degree(); rhs.sorted_by_degree(); if (this_degree == rhs_degree) { if (carry_node) { if (carry_node->child_count() < this_degree) { trees.insert(this_iterator, *carry_node); carry_node = NULL; } else { rhs.trees.pop_front(); carry_node = merge_trees(carry_node, rhs_node); } ++this_iterator; } else { this_iterator = trees.erase(this_iterator); rhs.trees.pop_front(); carry_node = merge_trees(this_node, rhs_node); } if (this_iterator == trees.end()) break; else continue; } if (this_degree < rhs_degree) { if (carry_node) { if (carry_node->child_count() < this_degree) { trees.insert(this_iterator, *carry_node); carry_node = NULL; ++this_iterator; } else if (carry_node->child_count() == rhs_degree) { rhs.trees.pop_front(); carry_node = merge_trees(carry_node, rhs_node); continue; } else { this_iterator = trees.erase(this_iterator); carry_node = merge_trees(this_node, carry_node); } goto try_again; } else { ++this_iterator; if (this_iterator == trees.end()) break; goto try_again; } if (this_iterator == trees.end()) break; else continue; } if (this_degree > rhs_degree) { rhs.trees.pop_front(); if (carry_node) { if (carry_node->child_count() < rhs_degree) { trees.insert(this_iterator, *carry_node); trees.insert(this_iterator, *rhs_node); carry_node = NULL; } else carry_node = merge_trees(rhs_node, carry_node); } else trees.insert(this_iterator, *rhs_node); } } if (!rhs.trees.empty()) { if (carry_node) { node_list_iterator rhs_it = rhs.trees.begin(); while (static_cast(&*rhs_it)->child_count() < carry_node->child_count()) ++rhs_it; rhs.insert_node(rhs_it, carry_node); rhs.increment(); sorted_by_degree(); rhs.sorted_by_degree(); if (trees.empty()) { trees.splice(trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end()); update_top_element(); } else merge_and_clear_nodes(rhs); } else trees.splice(trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end()); return; } if (carry_node) insert_node(this_iterator, carry_node); } void clone_forest(binomial_heap const & rhs) { BOOST_HEAP_ASSERT(trees.empty()); typedef typename node_type::template node_cloner node_cloner; trees.clone_from(rhs.trees, node_cloner(*this, NULL), detail::nop_disposer()); update_top_element(); } struct force_inf { template bool operator()(X const &, X const &) const { return false; } }; template void siftup(node_pointer n, Compare const & cmp) { while (n->parent) { node_pointer parent = n->parent; node_pointer grand_parent = parent->parent; if (cmp(n->value, parent->value)) return; n->remove_from_parent(); n->swap_children(parent); n->update_children(); parent->update_children(); if (grand_parent) { parent->remove_from_parent(); grand_parent->add_child(n); } else { node_list_iterator it = trees.erase(node_list_type::s_iterator_to(*parent)); trees.insert(it, *n); } n->add_child(parent); } } void siftdown(node_pointer n) { while (n->child_count()) { node_pointer max_child = detail::find_max_child(n->children, super_t::get_internal_cmp()); if (super_t::operator()(max_child->value, n->value)) return; max_child->remove_from_parent(); n->swap_children(max_child); n->update_children(); max_child->update_children(); node_pointer parent = n->parent; if (parent) { n->remove_from_parent(); max_child->add_child(n); parent->add_child(max_child); } else { node_list_iterator position = trees.erase(node_list_type::s_iterator_to(*n)); max_child->add_child(n); trees.insert(position, *max_child); } } } void insert_node(node_list_iterator it, node_pointer n) { if (it != trees.end()) BOOST_HEAP_ASSERT(static_cast(&*it)->child_count() >= n->child_count()); while(true) { BOOST_HEAP_ASSERT(!n->is_linked()); if (it == trees.end()) break; node_pointer this_node = static_cast(&*it); size_type this_degree = this_node->child_count(); size_type n_degree = n->child_count(); if (this_degree == n_degree) { BOOST_HEAP_ASSERT(it->is_linked()); it = trees.erase(it); n = merge_trees(n, this_node); } else break; } trees.insert(it, *n); } // private constructor, just used in pop() explicit binomial_heap(value_compare const & cmp, node_list_type & child_list, size_type size): super_t(cmp) { size_holder::set_size(size); if (size) top_element = static_cast(&*child_list.begin()); // not correct, but we will reset it later else top_element = NULL; for (node_list_iterator it = child_list.begin(); it != child_list.end(); ++it) { node_pointer n = static_cast(&*it); n->parent = NULL; } trees.splice(trees.end(), child_list, child_list.begin(), child_list.end()); trees.sort(detail::cmp_by_degree()); } node_pointer merge_trees (node_pointer node1, node_pointer node2) { BOOST_HEAP_ASSERT(node1->child_count() == node2->child_count()); if (super_t::operator()(node1->value, node2->value)) std::swap(node1, node2); if (node2->parent) node2->remove_from_parent(); node1->add_child(node2); return node1; } void update_top_element(void) { top_element = detail::find_max_child(trees, super_t::get_internal_cmp()); } void sorted_by_degree(void) const { #ifdef BOOST_HEAP_SANITYCHECKS int degree = -1; for (node_list_const_iterator it = trees.begin(); it != trees.end(); ++it) { const_node_pointer n = static_cast(&*it); BOOST_HEAP_ASSERT(int(n->child_count()) > degree); degree = n->child_count(); BOOST_HEAP_ASSERT((detail::is_heap(n, *this))); size_type child_nodes = detail::count_nodes(n); BOOST_HEAP_ASSERT(child_nodes == size_type(1 << static_cast(&*it)->child_count())); } #endif } void sanity_check(void) { #ifdef BOOST_HEAP_SANITYCHECKS sorted_by_degree(); if (!empty()) { node_pointer found_top = detail::find_max_child(trees, super_t::get_internal_cmp()); BOOST_HEAP_ASSERT(top_element == found_top); } if (constant_time_size) { size_t counted = detail::count_list_nodes(trees); size_t stored = size_holder::get_size(); BOOST_HEAP_ASSERT(counted == stored); } #endif } node_pointer top_element; node_list_type trees; #endif // BOOST_DOXYGEN_INVOKED }; } /* namespace heap */ } /* namespace boost */ #undef BOOST_HEAP_ASSERT #endif /* BOOST_HEAP_D_ARY_HEAP_HPP */