//======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Copyright 2004 The Trustees of Indiana University. // Copyright 2007 University of Karlsruhe // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor, // Jens Mueller // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #ifndef BOOST_GRAPH_LEDA_HPP #define BOOST_GRAPH_LEDA_HPP #include #include #include #include #include #include #include // The functions and classes in this file allows the user to // treat a LEDA GRAPH object as a boost graph "as is". No // wrapper is needed for the GRAPH object. // Warning: this implementation relies on partial specialization // for the graph_traits class (so it won't compile with Visual C++) // Warning: this implementation is in alpha and has not been tested namespace boost { struct leda_graph_traversal_category : public virtual bidirectional_graph_tag, public virtual adjacency_graph_tag, public virtual vertex_list_graph_tag { }; template < class vtype, class etype > struct graph_traits< leda::GRAPH< vtype, etype > > { typedef leda::node vertex_descriptor; typedef leda::edge edge_descriptor; class adjacency_iterator : public iterator_facade< adjacency_iterator, leda::node, bidirectional_traversal_tag, leda::node, const leda::node* > { public: adjacency_iterator( leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0) : base(node), g(g) { } private: leda::node dereference() const { return leda::target(base); } bool equal(const adjacency_iterator& other) const { return base == other.base; } void increment() { base = g->adj_succ(base); } void decrement() { base = g->adj_pred(base); } leda::edge base; const leda::GRAPH< vtype, etype >* g; friend class iterator_core_access; }; class out_edge_iterator : public iterator_facade< out_edge_iterator, leda::edge, bidirectional_traversal_tag, const leda::edge&, const leda::edge* > { public: out_edge_iterator( leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0) : base(node), g(g) { } private: const leda::edge& dereference() const { return base; } bool equal(const out_edge_iterator& other) const { return base == other.base; } void increment() { base = g->adj_succ(base); } void decrement() { base = g->adj_pred(base); } leda::edge base; const leda::GRAPH< vtype, etype >* g; friend class iterator_core_access; }; class in_edge_iterator : public iterator_facade< in_edge_iterator, leda::edge, bidirectional_traversal_tag, const leda::edge&, const leda::edge* > { public: in_edge_iterator( leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0) : base(node), g(g) { } private: const leda::edge& dereference() const { return base; } bool equal(const in_edge_iterator& other) const { return base == other.base; } void increment() { base = g->in_succ(base); } void decrement() { base = g->in_pred(base); } leda::edge base; const leda::GRAPH< vtype, etype >* g; friend class iterator_core_access; }; class vertex_iterator : public iterator_facade< vertex_iterator, leda::node, bidirectional_traversal_tag, const leda::node&, const leda::node* > { public: vertex_iterator( leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0) : base(node), g(g) { } private: const leda::node& dereference() const { return base; } bool equal(const vertex_iterator& other) const { return base == other.base; } void increment() { base = g->succ_node(base); } void decrement() { base = g->pred_node(base); } leda::node base; const leda::GRAPH< vtype, etype >* g; friend class iterator_core_access; }; class edge_iterator : public iterator_facade< edge_iterator, leda::edge, bidirectional_traversal_tag, const leda::edge&, const leda::edge* > { public: edge_iterator( leda::edge edge = 0, const leda::GRAPH< vtype, etype >* g = 0) : base(edge), g(g) { } private: const leda::edge& dereference() const { return base; } bool equal(const edge_iterator& other) const { return base == other.base; } void increment() { base = g->succ_edge(base); } void decrement() { base = g->pred_edge(base); } leda::node base; const leda::GRAPH< vtype, etype >* g; friend class iterator_core_access; }; typedef directed_tag directed_category; typedef allow_parallel_edge_tag edge_parallel_category; // not sure here typedef leda_graph_traversal_category traversal_category; typedef int vertices_size_type; typedef int edges_size_type; typedef int degree_size_type; }; template <> struct graph_traits< leda::graph > { typedef leda::node vertex_descriptor; typedef leda::edge edge_descriptor; class adjacency_iterator : public iterator_facade< adjacency_iterator, leda::node, bidirectional_traversal_tag, leda::node, const leda::node* > { public: adjacency_iterator(leda::edge edge = 0, const leda::graph* g = 0) : base(edge), g(g) { } private: leda::node dereference() const { return leda::target(base); } bool equal(const adjacency_iterator& other) const { return base == other.base; } void increment() { base = g->adj_succ(base); } void decrement() { base = g->adj_pred(base); } leda::edge base; const leda::graph* g; friend class iterator_core_access; }; class out_edge_iterator : public iterator_facade< out_edge_iterator, leda::edge, bidirectional_traversal_tag, const leda::edge&, const leda::edge* > { public: out_edge_iterator(leda::edge edge = 0, const leda::graph* g = 0) : base(edge), g(g) { } private: const leda::edge& dereference() const { return base; } bool equal(const out_edge_iterator& other) const { return base == other.base; } void increment() { base = g->adj_succ(base); } void decrement() { base = g->adj_pred(base); } leda::edge base; const leda::graph* g; friend class iterator_core_access; }; class in_edge_iterator : public iterator_facade< in_edge_iterator, leda::edge, bidirectional_traversal_tag, const leda::edge&, const leda::edge* > { public: in_edge_iterator(leda::edge edge = 0, const leda::graph* g = 0) : base(edge), g(g) { } private: const leda::edge& dereference() const { return base; } bool equal(const in_edge_iterator& other) const { return base == other.base; } void increment() { base = g->in_succ(base); } void decrement() { base = g->in_pred(base); } leda::edge base; const leda::graph* g; friend class iterator_core_access; }; class vertex_iterator : public iterator_facade< vertex_iterator, leda::node, bidirectional_traversal_tag, const leda::node&, const leda::node* > { public: vertex_iterator(leda::node node = 0, const leda::graph* g = 0) : base(node), g(g) { } private: const leda::node& dereference() const { return base; } bool equal(const vertex_iterator& other) const { return base == other.base; } void increment() { base = g->succ_node(base); } void decrement() { base = g->pred_node(base); } leda::node base; const leda::graph* g; friend class iterator_core_access; }; class edge_iterator : public iterator_facade< edge_iterator, leda::edge, bidirectional_traversal_tag, const leda::edge&, const leda::edge* > { public: edge_iterator(leda::edge edge = 0, const leda::graph* g = 0) : base(edge), g(g) { } private: const leda::edge& dereference() const { return base; } bool equal(const edge_iterator& other) const { return base == other.base; } void increment() { base = g->succ_edge(base); } void decrement() { base = g->pred_edge(base); } leda::edge base; const leda::graph* g; friend class iterator_core_access; }; typedef directed_tag directed_category; typedef allow_parallel_edge_tag edge_parallel_category; // not sure here typedef leda_graph_traversal_category traversal_category; typedef int vertices_size_type; typedef int edges_size_type; typedef int degree_size_type; }; } // namespace boost namespace boost { //=========================================================================== // functions for GRAPH template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor source( typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e, const leda::GRAPH< vtype, etype >& g) { return source(e); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor target( typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e, const leda::GRAPH< vtype, etype >& g) { return target(e); } template < class vtype, class etype > inline std::pair< typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator, typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator > vertices(const leda::GRAPH< vtype, etype >& g) { typedef typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator Iter; return std::make_pair(Iter(g.first_node(), &g), Iter(0, &g)); } template < class vtype, class etype > inline std::pair< typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator, typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator > edges(const leda::GRAPH< vtype, etype >& g) { typedef typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator Iter; return std::make_pair(Iter(g.first_edge(), &g), Iter(0, &g)); } template < class vtype, class etype > inline std::pair< typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator, typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator > out_edges( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, const leda::GRAPH< vtype, etype >& g) { typedef typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator Iter; return std::make_pair(Iter(g.first_adj_edge(u, 0), &g), Iter(0, &g)); } template < class vtype, class etype > inline std::pair< typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator, typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator > in_edges( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, const leda::GRAPH< vtype, etype >& g) { typedef typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator Iter; return std::make_pair(Iter(g.first_adj_edge(u, 1), &g), Iter(0, &g)); } template < class vtype, class etype > inline std::pair< typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator, typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator > adjacent_vertices( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, const leda::GRAPH< vtype, etype >& g) { typedef typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator Iter; return std::make_pair(Iter(g.first_adj_edge(u, 0), &g), Iter(0, &g)); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::vertices_size_type num_vertices(const leda::GRAPH< vtype, etype >& g) { return g.number_of_nodes(); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::edges_size_type num_edges( const leda::GRAPH< vtype, etype >& g) { return g.number_of_edges(); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type out_degree( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, const leda::GRAPH< vtype, etype >& g) { return g.outdeg(u); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type in_degree( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, const leda::GRAPH< vtype, etype >& g) { return g.indeg(u); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type degree( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, const leda::GRAPH< vtype, etype >& g) { return g.outdeg(u) + g.indeg(u); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor add_vertex(leda::GRAPH< vtype, etype >& g) { return g.new_node(); } template < class vtype, class etype > typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor add_vertex(const vtype& vp, leda::GRAPH< vtype, etype >& g) { return g.new_node(vp); } template < class vtype, class etype > void clear_vertex( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, leda::GRAPH< vtype, etype >& g) { typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator ei, ei_end; for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ei++) remove_edge(*ei); typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator iei, iei_end; for (boost::tie(iei, iei_end) = in_edges(u, g); iei != iei_end; iei++) remove_edge(*iei); } template < class vtype, class etype > void remove_vertex( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, leda::GRAPH< vtype, etype >& g) { g.del_node(u); } template < class vtype, class etype > std::pair< typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor, bool > add_edge( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v, leda::GRAPH< vtype, etype >& g) { return std::make_pair(g.new_edge(u, v), true); } template < class vtype, class etype > std::pair< typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor, bool > add_edge( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v, const etype& et, leda::GRAPH< vtype, etype >& g) { return std::make_pair(g.new_edge(u, v, et), true); } template < class vtype, class etype > void remove_edge( typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u, typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v, leda::GRAPH< vtype, etype >& g) { typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator i, iend; for (boost::tie(i, iend) = out_edges(u, g); i != iend; ++i) if (target(*i, g) == v) g.del_edge(*i); } template < class vtype, class etype > void remove_edge( typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e, leda::GRAPH< vtype, etype >& g) { g.del_edge(e); } //=========================================================================== // functions for graph (non-templated version) graph_traits< leda::graph >::vertex_descriptor source( graph_traits< leda::graph >::edge_descriptor e, const leda::graph& g) { return source(e); } graph_traits< leda::graph >::vertex_descriptor target( graph_traits< leda::graph >::edge_descriptor e, const leda::graph& g) { return target(e); } inline std::pair< graph_traits< leda::graph >::vertex_iterator, graph_traits< leda::graph >::vertex_iterator > vertices(const leda::graph& g) { typedef graph_traits< leda::graph >::vertex_iterator Iter; return std::make_pair(Iter(g.first_node(), &g), Iter(0, &g)); } inline std::pair< graph_traits< leda::graph >::edge_iterator, graph_traits< leda::graph >::edge_iterator > edges(const leda::graph& g) { typedef graph_traits< leda::graph >::edge_iterator Iter; return std::make_pair(Iter(g.first_edge(), &g), Iter(0, &g)); } inline std::pair< graph_traits< leda::graph >::out_edge_iterator, graph_traits< leda::graph >::out_edge_iterator > out_edges( graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g) { typedef graph_traits< leda::graph >::out_edge_iterator Iter; return std::make_pair(Iter(g.first_adj_edge(u), &g), Iter(0, &g)); } inline std::pair< graph_traits< leda::graph >::in_edge_iterator, graph_traits< leda::graph >::in_edge_iterator > in_edges(graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g) { typedef graph_traits< leda::graph >::in_edge_iterator Iter; return std::make_pair(Iter(g.first_in_edge(u), &g), Iter(0, &g)); } inline std::pair< graph_traits< leda::graph >::adjacency_iterator, graph_traits< leda::graph >::adjacency_iterator > adjacent_vertices( graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g) { typedef graph_traits< leda::graph >::adjacency_iterator Iter; return std::make_pair(Iter(g.first_adj_edge(u), &g), Iter(0, &g)); } graph_traits< leda::graph >::vertices_size_type num_vertices( const leda::graph& g) { return g.number_of_nodes(); } graph_traits< leda::graph >::edges_size_type num_edges(const leda::graph& g) { return g.number_of_edges(); } graph_traits< leda::graph >::degree_size_type out_degree( graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g) { return g.outdeg(u); } graph_traits< leda::graph >::degree_size_type in_degree( graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g) { return g.indeg(u); } graph_traits< leda::graph >::degree_size_type degree( graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g) { return g.outdeg(u) + g.indeg(u); } graph_traits< leda::graph >::vertex_descriptor add_vertex(leda::graph& g) { return g.new_node(); } void remove_edge(graph_traits< leda::graph >::vertex_descriptor u, graph_traits< leda::graph >::vertex_descriptor v, leda::graph& g) { graph_traits< leda::graph >::out_edge_iterator i, iend; for (boost::tie(i, iend) = out_edges(u, g); i != iend; ++i) if (target(*i, g) == v) g.del_edge(*i); } void remove_edge(graph_traits< leda::graph >::edge_descriptor e, leda::graph& g) { g.del_edge(e); } void clear_vertex( graph_traits< leda::graph >::vertex_descriptor u, leda::graph& g) { graph_traits< leda::graph >::out_edge_iterator ei, ei_end; for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ei++) remove_edge(*ei, g); graph_traits< leda::graph >::in_edge_iterator iei, iei_end; for (boost::tie(iei, iei_end) = in_edges(u, g); iei != iei_end; iei++) remove_edge(*iei, g); } void remove_vertex( graph_traits< leda::graph >::vertex_descriptor u, leda::graph& g) { g.del_node(u); } std::pair< graph_traits< leda::graph >::edge_descriptor, bool > add_edge( graph_traits< leda::graph >::vertex_descriptor u, graph_traits< leda::graph >::vertex_descriptor v, leda::graph& g) { return std::make_pair(g.new_edge(u, v), true); } //=========================================================================== // property maps for GRAPH class leda_graph_id_map : public put_get_helper< int, leda_graph_id_map > { public: typedef readable_property_map_tag category; typedef int value_type; typedef int reference; typedef leda::node key_type; leda_graph_id_map() {} template < class T > long operator[](T x) const { return x->id(); } }; template < class vtype, class etype > inline leda_graph_id_map get( vertex_index_t, const leda::GRAPH< vtype, etype >& g) { return leda_graph_id_map(); } template < class vtype, class etype > inline leda_graph_id_map get(edge_index_t, const leda::GRAPH< vtype, etype >& g) { return leda_graph_id_map(); } template < class Tag > struct leda_property_map { }; template <> struct leda_property_map< vertex_index_t > { template < class vtype, class etype > struct bind_ { typedef leda_graph_id_map type; typedef leda_graph_id_map const_type; }; }; template <> struct leda_property_map< edge_index_t > { template < class vtype, class etype > struct bind_ { typedef leda_graph_id_map type; typedef leda_graph_id_map const_type; }; }; template < class Data, class DataRef, class GraphPtr > class leda_graph_data_map : public put_get_helper< DataRef, leda_graph_data_map< Data, DataRef, GraphPtr > > { public: typedef Data value_type; typedef DataRef reference; typedef void key_type; typedef lvalue_property_map_tag category; leda_graph_data_map(GraphPtr g) : m_g(g) {} template < class NodeOrEdge > DataRef operator[](NodeOrEdge x) const { return (*m_g)[x]; } protected: GraphPtr m_g; }; template <> struct leda_property_map< vertex_all_t > { template < class vtype, class etype > struct bind_ { typedef leda_graph_data_map< vtype, vtype&, leda::GRAPH< vtype, etype >* > type; typedef leda_graph_data_map< vtype, const vtype&, const leda::GRAPH< vtype, etype >* > const_type; }; }; template < class vtype, class etype > inline typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::type get(vertex_all_t, leda::GRAPH< vtype, etype >& g) { typedef typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::type pmap_type; return pmap_type(&g); } template < class vtype, class etype > inline typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::const_type get(vertex_all_t, const leda::GRAPH< vtype, etype >& g) { typedef typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::const_type pmap_type; return pmap_type(&g); } template <> struct leda_property_map< edge_all_t > { template < class vtype, class etype > struct bind_ { typedef leda_graph_data_map< etype, etype&, leda::GRAPH< vtype, etype >* > type; typedef leda_graph_data_map< etype, const etype&, const leda::GRAPH< vtype, etype >* > const_type; }; }; template < class vtype, class etype > inline typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::type get(edge_all_t, leda::GRAPH< vtype, etype >& g) { typedef typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::type pmap_type; return pmap_type(&g); } template < class vtype, class etype > inline typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::const_type get(edge_all_t, const leda::GRAPH< vtype, etype >& g) { typedef typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::const_type pmap_type; return pmap_type(&g); } // property map interface to the LEDA node_array class template < class E, class ERef, class NodeMapPtr > class leda_node_property_map : public put_get_helper< ERef, leda_node_property_map< E, ERef, NodeMapPtr > > { public: typedef E value_type; typedef ERef reference; typedef leda::node key_type; typedef lvalue_property_map_tag category; leda_node_property_map(NodeMapPtr a) : m_array(a) {} ERef operator[](leda::node n) const { return (*m_array)[n]; } protected: NodeMapPtr m_array; }; template < class E > leda_node_property_map< E, const E&, const leda::node_array< E >* > make_leda_node_property_map(const leda::node_array< E >& a) { typedef leda_node_property_map< E, const E&, const leda::node_array< E >* > pmap_type; return pmap_type(&a); } template < class E > leda_node_property_map< E, E&, leda::node_array< E >* > make_leda_node_property_map(leda::node_array< E >& a) { typedef leda_node_property_map< E, E&, leda::node_array< E >* > pmap_type; return pmap_type(&a); } template < class E > leda_node_property_map< E, const E&, const leda::node_map< E >* > make_leda_node_property_map(const leda::node_map< E >& a) { typedef leda_node_property_map< E, const E&, const leda::node_map< E >* > pmap_type; return pmap_type(&a); } template < class E > leda_node_property_map< E, E&, leda::node_map< E >* > make_leda_node_property_map(leda::node_map< E >& a) { typedef leda_node_property_map< E, E&, leda::node_map< E >* > pmap_type; return pmap_type(&a); } // g++ 'enumeral_type' in template unification not implemented workaround template < class vtype, class etype, class Tag > struct property_map< leda::GRAPH< vtype, etype >, Tag > { typedef typename leda_property_map< Tag >::template bind_< vtype, etype > map_gen; typedef typename map_gen::type type; typedef typename map_gen::const_type const_type; }; template < class vtype, class etype, class PropertyTag, class Key > inline typename boost::property_traits< typename boost::property_map< leda::GRAPH< vtype, etype >, PropertyTag >::const_type >::value_type get(PropertyTag p, const leda::GRAPH< vtype, etype >& g, const Key& key) { return get(get(p, g), key); } template < class vtype, class etype, class PropertyTag, class Key, class Value > inline void put(PropertyTag p, leda::GRAPH< vtype, etype >& g, const Key& key, const Value& value) { typedef typename property_map< leda::GRAPH< vtype, etype >, PropertyTag >::type Map; Map pmap = get(p, g); put(pmap, key, value); } // property map interface to the LEDA edge_array class template < class E, class ERef, class EdgeMapPtr > class leda_edge_property_map : public put_get_helper< ERef, leda_edge_property_map< E, ERef, EdgeMapPtr > > { public: typedef E value_type; typedef ERef reference; typedef leda::edge key_type; typedef lvalue_property_map_tag category; leda_edge_property_map(EdgeMapPtr a) : m_array(a) {} ERef operator[](leda::edge n) const { return (*m_array)[n]; } protected: EdgeMapPtr m_array; }; template < class E > leda_edge_property_map< E, const E&, const leda::edge_array< E >* > make_leda_node_property_map(const leda::node_array< E >& a) { typedef leda_edge_property_map< E, const E&, const leda::node_array< E >* > pmap_type; return pmap_type(&a); } template < class E > leda_edge_property_map< E, E&, leda::edge_array< E >* > make_leda_edge_property_map(leda::edge_array< E >& a) { typedef leda_edge_property_map< E, E&, leda::edge_array< E >* > pmap_type; return pmap_type(&a); } template < class E > leda_edge_property_map< E, const E&, const leda::edge_map< E >* > make_leda_edge_property_map(const leda::edge_map< E >& a) { typedef leda_edge_property_map< E, const E&, const leda::edge_map< E >* > pmap_type; return pmap_type(&a); } template < class E > leda_edge_property_map< E, E&, leda::edge_map< E >* > make_leda_edge_property_map(leda::edge_map< E >& a) { typedef leda_edge_property_map< E, E&, leda::edge_map< E >* > pmap_type; return pmap_type(&a); } } // namespace boost #endif // BOOST_GRAPH_LEDA_HPP