//======================================================================= // Copyright 2000 University of Notre Dame. // Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #ifndef BOOST_GRAPH_EDMONDS_KARP_MAX_FLOW_HPP #define BOOST_GRAPH_EDMONDS_KARP_MAX_FLOW_HPP #include #include #include // for std::min and std::max #include #include #include #include #include #include #include namespace boost { // The "labeling" algorithm from "Network Flows" by Ahuja, Magnanti, // Orlin. I think this is the same as or very similar to the original // Edmonds-Karp algorithm. This solves the maximum flow problem. namespace detail { template < class Graph, class ResCapMap > filtered_graph< Graph, is_residual_edge< ResCapMap > > residual_graph( Graph& g, ResCapMap residual_capacity) { return filtered_graph< Graph, is_residual_edge< ResCapMap > >( g, is_residual_edge< ResCapMap >(residual_capacity)); } template < class Graph, class PredEdgeMap, class ResCapMap, class RevEdgeMap > inline void augment(Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink, PredEdgeMap p, ResCapMap residual_capacity, RevEdgeMap reverse_edge) { typename graph_traits< Graph >::edge_descriptor e; typename graph_traits< Graph >::vertex_descriptor u; typedef typename property_traits< ResCapMap >::value_type FlowValue; // find minimum residual capacity along the augmenting path FlowValue delta = (std::numeric_limits< FlowValue >::max)(); e = get(p, sink); do { BOOST_USING_STD_MIN(); delta = min BOOST_PREVENT_MACRO_SUBSTITUTION( delta, get(residual_capacity, e)); u = source(e, g); e = get(p, u); } while (u != src); // push delta units of flow along the augmenting path e = get(p, sink); do { put(residual_capacity, e, get(residual_capacity, e) - delta); put(residual_capacity, get(reverse_edge, e), get(residual_capacity, get(reverse_edge, e)) + delta); u = source(e, g); e = get(p, u); } while (u != src); } } // namespace detail template < class Graph, class CapacityEdgeMap, class ResidualCapacityEdgeMap, class ReverseEdgeMap, class ColorMap, class PredEdgeMap > typename property_traits< CapacityEdgeMap >::value_type edmonds_karp_max_flow( Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink, CapacityEdgeMap cap, ResidualCapacityEdgeMap res, ReverseEdgeMap rev, ColorMap color, PredEdgeMap pred) { typedef typename graph_traits< Graph >::vertex_descriptor vertex_t; typedef typename property_traits< ColorMap >::value_type ColorValue; typedef color_traits< ColorValue > Color; typename graph_traits< Graph >::vertex_iterator u_iter, u_end; typename graph_traits< Graph >::out_edge_iterator ei, e_end; for (boost::tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) for (boost::tie(ei, e_end) = out_edges(*u_iter, g); ei != e_end; ++ei) put(res, *ei, get(cap, *ei)); put(color, sink, Color::gray()); while (get(color, sink) != Color::white()) { boost::queue< vertex_t > Q; breadth_first_search(detail::residual_graph(g, res), src, Q, make_bfs_visitor(record_edge_predecessors(pred, on_tree_edge())), color); if (get(color, sink) != Color::white()) detail::augment(g, src, sink, pred, res, rev); } // while typename property_traits< CapacityEdgeMap >::value_type flow = 0; for (boost::tie(ei, e_end) = out_edges(src, g); ei != e_end; ++ei) flow += (get(cap, *ei) - get(res, *ei)); return flow; } // edmonds_karp_max_flow() namespace detail { //------------------------------------------------------------------------- // Handle default for color property map // use of class here is a VC++ workaround template < class ColorMap > struct edmonds_karp_dispatch2 { template < class Graph, class PredMap, class P, class T, class R > static typename edge_capacity_value< Graph, P, T, R >::type apply( Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink, PredMap pred, const bgl_named_params< P, T, R >& params, ColorMap color) { return edmonds_karp_max_flow(g, src, sink, choose_const_pmap( get_param(params, edge_capacity), g, edge_capacity), choose_pmap(get_param(params, edge_residual_capacity), g, edge_residual_capacity), choose_const_pmap( get_param(params, edge_reverse), g, edge_reverse), color, pred); } }; template <> struct edmonds_karp_dispatch2< param_not_found > { template < class Graph, class PredMap, class P, class T, class R > static typename edge_capacity_value< Graph, P, T, R >::type apply( Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink, PredMap pred, const bgl_named_params< P, T, R >& params, param_not_found) { typedef typename graph_traits< Graph >::vertices_size_type size_type; size_type n = is_default_param(get_param(params, vertex_color)) ? num_vertices(g) : 1; std::vector< default_color_type > color_vec(n); return edmonds_karp_max_flow(g, src, sink, choose_const_pmap( get_param(params, edge_capacity), g, edge_capacity), choose_pmap(get_param(params, edge_residual_capacity), g, edge_residual_capacity), choose_const_pmap( get_param(params, edge_reverse), g, edge_reverse), make_iterator_property_map(color_vec.begin(), choose_const_pmap( get_param(params, vertex_index), g, vertex_index), color_vec[0]), pred); } }; //------------------------------------------------------------------------- // Handle default for predecessor property map // use of class here is a VC++ workaround template < class PredMap > struct edmonds_karp_dispatch1 { template < class Graph, class P, class T, class R > static typename edge_capacity_value< Graph, P, T, R >::type apply( Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink, const bgl_named_params< P, T, R >& params, PredMap pred) { typedef typename get_param_type< vertex_color_t, bgl_named_params< P, T, R > >::type C; return edmonds_karp_dispatch2< C >::apply( g, src, sink, pred, params, get_param(params, vertex_color)); } }; template <> struct edmonds_karp_dispatch1< param_not_found > { template < class Graph, class P, class T, class R > static typename edge_capacity_value< Graph, P, T, R >::type apply( Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink, const bgl_named_params< P, T, R >& params, param_not_found) { typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor; typedef typename graph_traits< Graph >::vertices_size_type size_type; size_type n = is_default_param(get_param(params, vertex_predecessor)) ? num_vertices(g) : 1; std::vector< edge_descriptor > pred_vec(n); typedef typename get_param_type< vertex_color_t, bgl_named_params< P, T, R > >::type C; return edmonds_karp_dispatch2< C >::apply(g, src, sink, make_iterator_property_map(pred_vec.begin(), choose_const_pmap( get_param(params, vertex_index), g, vertex_index), pred_vec[0]), params, get_param(params, vertex_color)); } }; } // namespace detail template < class Graph, class P, class T, class R > typename detail::edge_capacity_value< Graph, P, T, R >::type edmonds_karp_max_flow(Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink, const bgl_named_params< P, T, R >& params) { typedef typename get_param_type< vertex_predecessor_t, bgl_named_params< P, T, R > >::type Pred; return detail::edmonds_karp_dispatch1< Pred >::apply( g, src, sink, params, get_param(params, vertex_predecessor)); } template < class Graph > typename property_traits< typename property_map< Graph, edge_capacity_t >::const_type >::value_type edmonds_karp_max_flow(Graph& g, typename graph_traits< Graph >::vertex_descriptor src, typename graph_traits< Graph >::vertex_descriptor sink) { bgl_named_params< int, buffer_param_t > params(0); return edmonds_karp_max_flow(g, src, sink, params); } } // namespace boost #endif // BOOST_GRAPH_EDMONDS_KARP_MAX_FLOW_HPP