// (C) Copyright 2007-2009 Andrew Sutton // // Use, modification and distribution are subject to the // Boost Software License, Version 1.0 (See accompanying file // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GRAPH_CLIQUE_HPP #define BOOST_GRAPH_CLIQUE_HPP #include #include #include #include #include #include #include namespace boost { namespace concepts { BOOST_concept(CliqueVisitor, (Visitor)(Clique)(Graph)) { BOOST_CONCEPT_USAGE(CliqueVisitor) { vis.clique(k, g); } private: Visitor vis; Graph g; Clique k; }; } /* namespace concepts */ using concepts::CliqueVisitorConcept; } /* namespace boost */ #include namespace boost { // The algorithm implemented in this paper is based on the so-called // Algorithm 457, published as: // // @article{362367, // author = {Coen Bron and Joep Kerbosch}, // title = {Algorithm 457: finding all cliques of an undirected graph}, // journal = {Communications of the ACM}, // volume = {16}, // number = {9}, // year = {1973}, // issn = {0001-0782}, // pages = {575--577}, // doi = {http://doi.acm.org/10.1145/362342.362367}, // publisher = {ACM Press}, // address = {New York, NY, USA}, // } // // Sort of. This implementation is adapted from the 1st version of the // algorithm and does not implement the candidate selection optimization // described as published - it could, it just doesn't yet. // // The algorithm is given as proportional to (3.14)^(n/3) power. This is // not the same as O(...), but based on time measures and approximation. // // Unfortunately, this implementation may be less efficient on non- // AdjacencyMatrix modeled graphs due to the non-constant implementation // of the edge(u,v,g) functions. // // TODO: It might be worthwhile to provide functionality for passing // a connectivity matrix to improve the efficiency of those lookups // when needed. This could simply be passed as a BooleanMatrix // s.t. edge(u,v,B) returns true or false. This could easily be // abstracted for adjacency matricies. // // The following paper is interesting for a number of reasons. First, // it lists a number of other such algorithms and second, it describes // a new algorithm (that does not appear to require the edge(u,v,g) // function and appears fairly efficient. It is probably worth investigating. // // @article{DBLP:journals/tcs/TomitaTT06, // author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi}, // title = {The worst-case time complexity for generating all maximal // cliques and computational experiments}, journal = {Theor. Comput. // Sci.}, volume = {363}, number = {1}, year = {2006}, pages = {28-42} // ee = {https://doi.org/10.1016/j.tcs.2006.06.015} // } /** * The default clique_visitor supplies an empty visitation function. */ struct clique_visitor { template < typename VertexSet, typename Graph > void clique(const VertexSet&, Graph&) { } }; /** * The max_clique_visitor records the size of the maximum clique (but not the * clique itself). */ struct max_clique_visitor { max_clique_visitor(std::size_t& max) : maximum(max) {} template < typename Clique, typename Graph > inline void clique(const Clique& p, const Graph& g) { BOOST_USING_STD_MAX(); maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION(maximum, p.size()); } std::size_t& maximum; }; inline max_clique_visitor find_max_clique(std::size_t& max) { return max_clique_visitor(max); } namespace detail { template < typename Graph > inline bool is_connected_to_clique(const Graph& g, typename graph_traits< Graph >::vertex_descriptor u, typename graph_traits< Graph >::vertex_descriptor v, typename graph_traits< Graph >::undirected_category) { return lookup_edge(u, v, g).second; } template < typename Graph > inline bool is_connected_to_clique(const Graph& g, typename graph_traits< Graph >::vertex_descriptor u, typename graph_traits< Graph >::vertex_descriptor v, typename graph_traits< Graph >::directed_category) { // Note that this could alternate between using an || to determine // full connectivity. I believe that this should produce strongly // connected components. Note that using && instead of || will // change the results to a fully connected subgraph (i.e., symmetric // edges between all vertices s.t., if a->b, then b->a. return lookup_edge(u, v, g).second && lookup_edge(v, u, g).second; } template < typename Graph, typename Container > inline void filter_unconnected_vertices(const Graph& g, typename graph_traits< Graph >::vertex_descriptor v, const Container& in, Container& out) { BOOST_CONCEPT_ASSERT((GraphConcept< Graph >)); typename graph_traits< Graph >::directed_category cat; typename Container::const_iterator i, end = in.end(); for (i = in.begin(); i != end; ++i) { if (is_connected_to_clique(g, v, *i, cat)) { out.push_back(*i); } } } template < typename Graph, typename Clique, // compsub type typename Container, // candidates/not type typename Visitor > void extend_clique(const Graph& g, Clique& clique, Container& cands, Container& nots, Visitor vis, std::size_t min) { BOOST_CONCEPT_ASSERT((GraphConcept< Graph >)); BOOST_CONCEPT_ASSERT((CliqueVisitorConcept< Visitor, Clique, Graph >)); typedef typename graph_traits< Graph >::vertex_descriptor Vertex; // Is there vertex in nots that is connected to all vertices // in the candidate set? If so, no clique can ever be found. // This could be broken out into a separate function. { typename Container::iterator ni, nend = nots.end(); typename Container::iterator ci, cend = cands.end(); for (ni = nots.begin(); ni != nend; ++ni) { for (ci = cands.begin(); ci != cend; ++ci) { // if we don't find an edge, then we're okay. if (!lookup_edge(*ni, *ci, g).second) break; } // if we iterated all the way to the end, then *ni // is connected to all *ci if (ci == cend) break; } // if we broke early, we found *ni connected to all *ci if (ni != nend) return; } // TODO: the original algorithm 457 describes an alternative // (albeit really complicated) mechanism for selecting candidates. // The given optimizaiton seeks to bring about the above // condition sooner (i.e., there is a vertex in the not set // that is connected to all candidates). unfortunately, the // method they give for doing this is fairly unclear. // basically, for every vertex in not, we should know how many // vertices it is disconnected from in the candidate set. if // we fix some vertex in the not set, then we want to keep // choosing vertices that are not connected to that fixed vertex. // apparently, by selecting fix point with the minimum number // of disconnections (i.e., the maximum number of connections // within the candidate set), then the previous condition wil // be reached sooner. // there's some other stuff about using the number of disconnects // as a counter, but i'm jot really sure i followed it. // TODO: If we min-sized cliques to visit, then theoretically, we // should be able to stop recursing if the clique falls below that // size - maybe? // otherwise, iterate over candidates and and test // for maxmimal cliquiness. typename Container::iterator i, j; for (i = cands.begin(); i != cands.end();) { Vertex candidate = *i; // add the candidate to the clique (keeping the iterator!) // typename Clique::iterator ci = clique.insert(clique.end(), // candidate); clique.push_back(candidate); // remove it from the candidate set i = cands.erase(i); // build new candidate and not sets by removing all vertices // that are not connected to the current candidate vertex. // these actually invert the operation, adding them to the new // sets if the vertices are connected. its semantically the same. Container new_cands, new_nots; filter_unconnected_vertices(g, candidate, cands, new_cands); filter_unconnected_vertices(g, candidate, nots, new_nots); if (new_cands.empty() && new_nots.empty()) { // our current clique is maximal since there's nothing // that's connected that we haven't already visited. If // the clique is below our radar, then we won't visit it. if (clique.size() >= min) { vis.clique(clique, g); } } else { // recurse to explore the new candidates extend_clique(g, clique, new_cands, new_nots, vis, min); } // we're done with this vertex, so we need to move it // to the nots, and remove the candidate from the clique. nots.push_back(candidate); clique.pop_back(); } } } /* namespace detail */ template < typename Graph, typename Visitor > inline void bron_kerbosch_all_cliques( const Graph& g, Visitor vis, std::size_t min) { BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >)); BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >)); BOOST_CONCEPT_ASSERT( (AdjacencyMatrixConcept< Graph >)); // Structural requirement only typedef typename graph_traits< Graph >::vertex_descriptor Vertex; typedef typename graph_traits< Graph >::vertex_iterator VertexIterator; typedef std::vector< Vertex > VertexSet; typedef std::deque< Vertex > Clique; BOOST_CONCEPT_ASSERT((CliqueVisitorConcept< Visitor, Clique, Graph >)); // NOTE: We're using a deque to implement the clique, because it provides // constant inserts and removals at the end and also a constant size. VertexIterator i, end; boost::tie(i, end) = vertices(g); VertexSet cands(i, end); // start with all vertices as candidates VertexSet nots; // start with no vertices visited Clique clique; // the first clique is an empty vertex set detail::extend_clique(g, clique, cands, nots, vis, min); } // NOTE: By default the minimum number of vertices per clique is set at 2 // because singleton cliques aren't really very interesting. template < typename Graph, typename Visitor > inline void bron_kerbosch_all_cliques(const Graph& g, Visitor vis) { bron_kerbosch_all_cliques(g, vis, 2); } template < typename Graph > inline std::size_t bron_kerbosch_clique_number(const Graph& g) { std::size_t ret = 0; bron_kerbosch_all_cliques(g, find_max_clique(ret)); return ret; } } /* namespace boost */ #endif