// Boost.Geometry // Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland. // Copyright (c) 2016-2020, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP #define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace strategy { namespace intersection { // CONSIDER: Improvement of the robustness/accuracy/repeatability by // moving all segments to 0 longitude // picking latitudes closer to 0 // etc. template < typename FormulaPolicy = strategy::andoyer, std::size_t Order = strategy::default_order::value, typename Spheroid = srs::spheroid, typename CalculationType = void > struct geographic_segments { typedef geographic_tag cs_tag; typedef side::geographic < FormulaPolicy, Spheroid, CalculationType > side_strategy_type; inline side_strategy_type get_side_strategy() const { return side_strategy_type(m_spheroid); } template struct point_in_geometry_strategy { typedef strategy::within::geographic_winding < typename point_type::type, typename point_type::type, FormulaPolicy, Spheroid, CalculationType > type; }; template inline typename point_in_geometry_strategy::type get_point_in_geometry_strategy() const { typedef typename point_in_geometry_strategy < Geometry1, Geometry2 >::type strategy_type; return strategy_type(m_spheroid); } template struct area_strategy { typedef area::geographic < FormulaPolicy, Order, Spheroid, CalculationType > type; }; template inline typename area_strategy::type get_area_strategy() const { typedef typename area_strategy::type strategy_type; return strategy_type(m_spheroid); } template struct distance_strategy { typedef distance::geographic < FormulaPolicy, Spheroid, CalculationType > type; }; template inline typename distance_strategy::type get_distance_strategy() const { typedef typename distance_strategy::type strategy_type; return strategy_type(m_spheroid); } typedef envelope::geographic envelope_strategy_type; inline envelope_strategy_type get_envelope_strategy() const { return envelope_strategy_type(m_spheroid); } typedef expand::geographic_segment expand_strategy_type; inline expand_strategy_type get_expand_strategy() const { return expand_strategy_type(m_spheroid); } typedef within::spherical_point_point point_in_point_strategy_type; static inline point_in_point_strategy_type get_point_in_point_strategy() { return point_in_point_strategy_type(); } typedef within::spherical_point_point equals_point_point_strategy_type; static inline equals_point_point_strategy_type get_equals_point_point_strategy() { return equals_point_point_strategy_type(); } typedef disjoint::spherical_box_box disjoint_box_box_strategy_type; static inline disjoint_box_box_strategy_type get_disjoint_box_box_strategy() { return disjoint_box_box_strategy_type(); } typedef disjoint::segment_box_geographic < FormulaPolicy, Spheroid, CalculationType > disjoint_segment_box_strategy_type; inline disjoint_segment_box_strategy_type get_disjoint_segment_box_strategy() const { return disjoint_segment_box_strategy_type(m_spheroid); } typedef covered_by::spherical_point_box disjoint_point_box_strategy_type; typedef covered_by::spherical_point_box covered_by_point_box_strategy_type; typedef within::spherical_point_box within_point_box_strategy_type; typedef envelope::spherical_box envelope_box_strategy_type; typedef expand::spherical_box expand_box_strategy_type; enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 }; template struct segment_intersection_info { template void calculate(Point& point, Segment1 const& a, Segment2 const& b) const { if (ip_flag == ipi_inters) { // TODO: assign the rest of coordinates set_from_radian<0>(point, lon); set_from_radian<1>(point, lat); } else if (ip_flag == ipi_at_a1) { detail::assign_point_from_index<0>(a, point); } else if (ip_flag == ipi_at_a2) { detail::assign_point_from_index<1>(a, point); } else if (ip_flag == ipi_at_b1) { detail::assign_point_from_index<0>(b, point); } else // ip_flag == ipi_at_b2 { detail::assign_point_from_index<1>(b, point); } } CoordinateType lon; CoordinateType lat; SegmentRatio robust_ra; SegmentRatio robust_rb; intersection_point_flag ip_flag; }; explicit geographic_segments(Spheroid const& spheroid = Spheroid()) : m_spheroid(spheroid) {} Spheroid model() const { return m_spheroid; } // Relate segments a and b template < typename UniqueSubRange1, typename UniqueSubRange2, typename Policy > inline typename Policy::return_type apply(UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q, Policy const&) const { typedef typename UniqueSubRange1::point_type point1_type; typedef typename UniqueSubRange2::point_type point2_type; typedef model::referring_segment segment_type1; typedef model::referring_segment segment_type2; BOOST_CONCEPT_ASSERT( (concepts::ConstPoint) ); BOOST_CONCEPT_ASSERT( (concepts::ConstPoint) ); /* typename coordinate_type::type const a1_lon = get<0>(a1), const a2_lon = get<0>(a2); typename coordinate_type::type const b1_lon = get<0>(b1), const b2_lon = get<0>(b2); bool is_a_reversed = a1_lon > a2_lon || a1_lon == a2_lon && get<1>(a1) > get<1>(a2); bool is_b_reversed = b1_lon > b2_lon || b1_lon == b2_lon && get<1>(b1) > get<1>(b2); */ point1_type const& p0 = range_p.at(0); point1_type const& p1 = range_p.at(1); point2_type const& q0 = range_q.at(0); point2_type const& q1 = range_q.at(1); bool const is_p_reversed = get<1>(p0) > get<1>(p1); bool const is_q_reversed = get<1>(q0) > get<1>(q1); // Call apply with original segments and ordered points return apply(segment_type1(p0, p1), segment_type2(q0, q1), (is_p_reversed ? p1 : p0), (is_p_reversed ? p0 : p1), (is_q_reversed ? q1 : q0), (is_q_reversed ? q0 : q1), is_p_reversed, is_q_reversed); } private: // Relate segments a and b template < typename Policy, typename Segment1, typename Segment2, typename Point1, typename Point2 > inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b, Point1 const& a1, Point1 const& a2, Point2 const& b1, Point2 const& b2, bool is_a_reversed, bool is_b_reversed) const { BOOST_CONCEPT_ASSERT( (concepts::ConstSegment) ); BOOST_CONCEPT_ASSERT( (concepts::ConstSegment) ); typedef typename select_calculation_type ::type calc_t; typedef srs::spheroid spheroid_type; static const calc_t c0 = 0; // normalized spheroid spheroid_type spheroid = formula::unit_spheroid(m_spheroid); // TODO: check only 2 first coordinates here? bool a_is_point = equals_point_point(a1, a2); bool b_is_point = equals_point_point(b1, b2); if(a_is_point && b_is_point) { return equals_point_point(a1, b2) ? Policy::degenerate(a, true) : Policy::disjoint() ; } calc_t const a1_lon = get_as_radian<0>(a1); calc_t const a1_lat = get_as_radian<1>(a1); calc_t const a2_lon = get_as_radian<0>(a2); calc_t const a2_lat = get_as_radian<1>(a2); calc_t const b1_lon = get_as_radian<0>(b1); calc_t const b1_lat = get_as_radian<1>(b1); calc_t const b2_lon = get_as_radian<0>(b2); calc_t const b2_lat = get_as_radian<1>(b2); side_info sides; // NOTE: potential optimization, don't calculate distance at this point // this would require to reimplement inverse strategy to allow // calculation of distance if needed, probably also storing intermediate // results somehow inside an object. typedef typename FormulaPolicy::template inverse inverse_dist_azi; typedef typename inverse_dist_azi::result_type inverse_result; // TODO: no need to call inverse formula if we know that the points are equal // distance can be set to 0 in this case and azimuth may be not calculated bool is_equal_a1_b1 = equals_point_point(a1, b1); bool is_equal_a2_b1 = equals_point_point(a2, b1); bool degen_neq_coords = false; inverse_result res_b1_b2, res_b1_a1, res_b1_a2; if (! b_is_point) { res_b1_b2 = inverse_dist_azi::apply(b1_lon, b1_lat, b2_lon, b2_lat, spheroid); if (math::equals(res_b1_b2.distance, c0)) { b_is_point = true; degen_neq_coords = true; } else { res_b1_a1 = inverse_dist_azi::apply(b1_lon, b1_lat, a1_lon, a1_lat, spheroid); if (math::equals(res_b1_a1.distance, c0)) { is_equal_a1_b1 = true; } res_b1_a2 = inverse_dist_azi::apply(b1_lon, b1_lat, a2_lon, a2_lat, spheroid); if (math::equals(res_b1_a2.distance, c0)) { is_equal_a2_b1 = true; } sides.set<0>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_b1_a1.azimuth, res_b1_b2.azimuth), is_equal_a2_b1 ? 0 : formula::azimuth_side_value(res_b1_a2.azimuth, res_b1_b2.azimuth)); if (sides.same<0>()) { // Both points are at the same side of other segment, we can leave return Policy::disjoint(); } } } bool is_equal_a1_b2 = equals_point_point(a1, b2); inverse_result res_a1_a2, res_a1_b1, res_a1_b2; if (! a_is_point) { res_a1_a2 = inverse_dist_azi::apply(a1_lon, a1_lat, a2_lon, a2_lat, spheroid); if (math::equals(res_a1_a2.distance, c0)) { a_is_point = true; degen_neq_coords = true; } else { res_a1_b1 = inverse_dist_azi::apply(a1_lon, a1_lat, b1_lon, b1_lat, spheroid); if (math::equals(res_a1_b1.distance, c0)) { is_equal_a1_b1 = true; } res_a1_b2 = inverse_dist_azi::apply(a1_lon, a1_lat, b2_lon, b2_lat, spheroid); if (math::equals(res_a1_b2.distance, c0)) { is_equal_a1_b2 = true; } sides.set<1>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_a1_b1.azimuth, res_a1_a2.azimuth), is_equal_a1_b2 ? 0 : formula::azimuth_side_value(res_a1_b2.azimuth, res_a1_a2.azimuth)); if (sides.same<1>()) { // Both points are at the same side of other segment, we can leave return Policy::disjoint(); } } } if(a_is_point && b_is_point) { return is_equal_a1_b2 ? Policy::degenerate(a, true) : Policy::disjoint() ; } // NOTE: at this point the segments may still be disjoint // NOTE: at this point one of the segments may be degenerated bool collinear = sides.collinear(); if (! collinear) { // WARNING: the side strategy doesn't have the info about the other // segment so it may return results inconsistent with this intersection // strategy, as it checks both segments for consistency if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0) { collinear = true; sides.set<1>(0, 0); } else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0) { collinear = true; sides.set<0>(0, 0); } } if (collinear) { if (a_is_point) { return collinear_one_degenerated(a, true, b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, is_b_reversed, degen_neq_coords); } else if (b_is_point) { return collinear_one_degenerated(b, false, a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, is_a_reversed, degen_neq_coords); } else { calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2; calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2; // use shorter segment if (res_a1_a2.distance <= res_b1_b2.distance) { calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_a1_a2, dist_a1_b1); calculate_collinear_data(a1, a2, b2, b1, res_a1_a2, res_a1_b2, res_a1_b1, dist_a1_a2, dist_a1_b2); dist_b1_b2 = dist_a1_b2 - dist_a1_b1; dist_b1_a1 = -dist_a1_b1; dist_b1_a2 = dist_a1_a2 - dist_a1_b1; } else { calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, dist_b1_b2, dist_b1_a1); calculate_collinear_data(b1, b2, a2, a1, res_b1_b2, res_b1_a2, res_b1_a1, dist_b1_b2, dist_b1_a2); dist_a1_a2 = dist_b1_a2 - dist_b1_a1; dist_a1_b1 = -dist_b1_a1; dist_a1_b2 = dist_b1_b2 - dist_b1_a1; } // NOTE: this is probably not needed int a1_on_b = position_value(c0, dist_a1_b1, dist_a1_b2); int a2_on_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2); int b1_on_a = position_value(c0, dist_b1_a1, dist_b1_a2); int b2_on_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2); if ((a1_on_b < 1 && a2_on_b < 1) || (a1_on_b > 3 && a2_on_b > 3)) { return Policy::disjoint(); } if (a1_on_b == 1) { dist_b1_a1 = 0; dist_a1_b1 = 0; } else if (a1_on_b == 3) { dist_b1_a1 = dist_b1_b2; dist_a1_b2 = 0; } if (a2_on_b == 1) { dist_b1_a2 = 0; dist_a1_b1 = dist_a1_a2; } else if (a2_on_b == 3) { dist_b1_a2 = dist_b1_b2; dist_a1_b2 = dist_a1_a2; } bool opposite = ! same_direction(res_a1_a2.azimuth, res_b1_b2.azimuth); // NOTE: If segment was reversed opposite, positions and segment ratios has to be altered if (is_a_reversed) { // opposite opposite = ! opposite; // positions std::swap(a1_on_b, a2_on_b); b1_on_a = 4 - b1_on_a; b2_on_a = 4 - b2_on_a; // distances for ratios std::swap(dist_b1_a1, dist_b1_a2); dist_a1_b1 = dist_a1_a2 - dist_a1_b1; dist_a1_b2 = dist_a1_a2 - dist_a1_b2; } if (is_b_reversed) { // opposite opposite = ! opposite; // positions a1_on_b = 4 - a1_on_b; a2_on_b = 4 - a2_on_b; std::swap(b1_on_a, b2_on_a); // distances for ratios dist_b1_a1 = dist_b1_b2 - dist_b1_a1; dist_b1_a2 = dist_b1_b2 - dist_b1_a2; std::swap(dist_a1_b1, dist_a1_b2); } segment_ratio ra_from(dist_b1_a1, dist_b1_b2); segment_ratio ra_to(dist_b1_a2, dist_b1_b2); segment_ratio rb_from(dist_a1_b1, dist_a1_a2); segment_ratio rb_to(dist_a1_b2, dist_a1_a2); return Policy::segments_collinear(a, b, opposite, a1_on_b, a2_on_b, b1_on_a, b2_on_a, ra_from, ra_to, rb_from, rb_to); } } else // crossing or touching { if (a_is_point || b_is_point) { return Policy::disjoint(); } calc_t lon = 0, lat = 0; intersection_point_flag ip_flag; calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1; if (calculate_ip_data(a1, a2, b1, b2, a1_lon, a1_lat, a2_lon, a2_lat, b1_lon, b1_lat, b2_lon, b2_lat, res_a1_a2, res_a1_b1, res_a1_b2, res_b1_b2, res_b1_a1, res_b1_a2, sides, spheroid, lon, lat, dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1, ip_flag)) { // NOTE: If segment was reversed sides and segment ratios has to be altered if (is_a_reversed) { // sides sides_reverse_segment<0>(sides); // distance for ratio dist_a1_i1 = dist_a1_a2 - dist_a1_i1; // ip flag ip_flag_reverse_segment(ip_flag, ipi_at_a1, ipi_at_a2); } if (is_b_reversed) { // sides sides_reverse_segment<1>(sides); // distance for ratio dist_b1_i1 = dist_b1_b2 - dist_b1_i1; // ip flag ip_flag_reverse_segment(ip_flag, ipi_at_b1, ipi_at_b2); } // intersects segment_intersection_info < calc_t, segment_ratio > sinfo; sinfo.lon = lon; sinfo.lat = lat; sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2); sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2); sinfo.ip_flag = ip_flag; return Policy::segments_crosses(sides, sinfo, a, b); } else { return Policy::disjoint(); } } } template static inline typename Policy::return_type collinear_one_degenerated(Segment const& segment, bool degenerated_a, Point1 const& a1, Point1 const& a2, Point2 const& b1, Point2 const& b2, ResultInverse const& res_a1_a2, ResultInverse const& res_a1_b1, ResultInverse const& res_a1_b2, bool is_other_reversed, bool degen_neq_coords) { CalcT dist_1_2, dist_1_o; if (! calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_1_2, dist_1_o, degen_neq_coords)) { return Policy::disjoint(); } // NOTE: If segment was reversed segment ratio has to be altered if (is_other_reversed) { // distance for ratio dist_1_o = dist_1_2 - dist_1_o; } return Policy::one_degenerate(segment, segment_ratio(dist_1_o, dist_1_2), degenerated_a); } // TODO: instead of checks below test bi against a1 and a2 here? // in order to make this independent from is_near() template static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in Point2 const& b1, Point2 const& /*b2*/, // in ResultInverse const& res_a1_a2, // in ResultInverse const& res_a1_b1, // in ResultInverse const& res_a1_b2, // in CalcT& dist_a1_a2, // out CalcT& dist_a1_b1, // out bool degen_neq_coords = false) // in { dist_a1_a2 = res_a1_a2.distance; dist_a1_b1 = res_a1_b1.distance; if (! same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth)) { dist_a1_b1 = -dist_a1_b1; } // if b1 is close a1 if (is_endpoint_equal(dist_a1_b1, a1, b1)) { dist_a1_b1 = 0; return true; } // if b1 is close a2 else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1)) { dist_a1_b1 = dist_a1_a2; return true; } // check the other endpoint of degenerated segment near a pole if (degen_neq_coords) { static CalcT const c0 = 0; if (math::equals(res_a1_b2.distance, c0)) { dist_a1_b1 = 0; return true; } else if (math::equals(dist_a1_a2 - res_a1_b2.distance, c0)) { dist_a1_b1 = dist_a1_a2; return true; } } // or i1 is on b return segment_ratio(dist_a1_b1, dist_a1_a2).on_segment(); } template static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in Point2 const& b1, Point2 const& b2, // in CalcT const& a1_lon, CalcT const& a1_lat, // in CalcT const& a2_lon, CalcT const& a2_lat, // in CalcT const& b1_lon, CalcT const& b1_lat, // in CalcT const& b2_lon, CalcT const& b2_lat, // in ResultInverse const& res_a1_a2, // in ResultInverse const& res_a1_b1, // in ResultInverse const& res_a1_b2, // in ResultInverse const& res_b1_b2, // in ResultInverse const& res_b1_a1, // in ResultInverse const& res_b1_a2, // in side_info const& sides, // in Spheroid_ const& spheroid, // in CalcT & lon, CalcT & lat, // out CalcT& dist_a1_a2, CalcT& dist_a1_ip, // out CalcT& dist_b1_b2, CalcT& dist_b1_ip, // out intersection_point_flag& ip_flag) // out { dist_a1_a2 = res_a1_a2.distance; dist_b1_b2 = res_b1_b2.distance; // assign the IP if some endpoints overlap if (equals_point_point(a1, b1)) { lon = a1_lon; lat = a1_lat; dist_a1_ip = 0; dist_b1_ip = 0; ip_flag = ipi_at_a1; return true; } else if (equals_point_point(a1, b2)) { lon = a1_lon; lat = a1_lat; dist_a1_ip = 0; dist_b1_ip = dist_b1_b2; ip_flag = ipi_at_a1; return true; } else if (equals_point_point(a2, b1)) { lon = a2_lon; lat = a2_lat; dist_a1_ip = dist_a1_a2; dist_b1_ip = 0; ip_flag = ipi_at_a2; return true; } else if (equals_point_point(a2, b2)) { lon = a2_lon; lat = a2_lat; dist_a1_ip = dist_a1_a2; dist_b1_ip = dist_b1_b2; ip_flag = ipi_at_a2; return true; } // at this point we know that the endpoints doesn't overlap // check cases when an endpoint lies on the other geodesic if (sides.template get<0, 0>() == 0) // a1 wrt b { if (res_b1_a1.distance <= res_b1_b2.distance && same_direction(res_b1_a1.azimuth, res_b1_b2.azimuth)) { lon = a1_lon; lat = a1_lat; dist_a1_ip = 0; dist_b1_ip = res_b1_a1.distance; ip_flag = ipi_at_a1; return true; } else { return false; } } else if (sides.template get<0, 1>() == 0) // a2 wrt b { if (res_b1_a2.distance <= res_b1_b2.distance && same_direction(res_b1_a2.azimuth, res_b1_b2.azimuth)) { lon = a2_lon; lat = a2_lat; dist_a1_ip = res_a1_a2.distance; dist_b1_ip = res_b1_a2.distance; ip_flag = ipi_at_a2; return true; } else { return false; } } else if (sides.template get<1, 0>() == 0) // b1 wrt a { if (res_a1_b1.distance <= res_a1_a2.distance && same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth)) { lon = b1_lon; lat = b1_lat; dist_a1_ip = res_a1_b1.distance; dist_b1_ip = 0; ip_flag = ipi_at_b1; return true; } else { return false; } } else if (sides.template get<1, 1>() == 0) // b2 wrt a { if (res_a1_b2.distance <= res_a1_a2.distance && same_direction(res_a1_b2.azimuth, res_a1_a2.azimuth)) { lon = b2_lon; lat = b2_lat; dist_a1_ip = res_a1_b2.distance; dist_b1_ip = res_b1_b2.distance; ip_flag = ipi_at_b2; return true; } else { return false; } } // At this point neither the endpoints overlaps // nor any andpoint lies on the other geodesic // So the endpoints should lie on the opposite sides of both geodesics bool const ok = formula::sjoberg_intersection ::apply(a1_lon, a1_lat, a2_lon, a2_lat, res_a1_a2.azimuth, b1_lon, b1_lat, b2_lon, b2_lat, res_b1_b2.azimuth, lon, lat, spheroid); if (! ok) { return false; } typedef typename FormulaPolicy::template inverse inverse_dist_azi; typedef typename inverse_dist_azi::result_type inverse_result; inverse_result const res_a1_ip = inverse_dist_azi::apply(a1_lon, a1_lat, lon, lat, spheroid); dist_a1_ip = res_a1_ip.distance; if (! same_direction(res_a1_ip.azimuth, res_a1_a2.azimuth)) { dist_a1_ip = -dist_a1_ip; } bool is_on_a = segment_ratio(dist_a1_ip, dist_a1_a2).on_segment(); // NOTE: not fully consistent with equals_point_point() since radians are always used. bool is_on_a1 = math::equals(lon, a1_lon) && math::equals(lat, a1_lat); bool is_on_a2 = math::equals(lon, a2_lon) && math::equals(lat, a2_lat); if (! (is_on_a || is_on_a1 || is_on_a2)) { return false; } inverse_result const res_b1_ip = inverse_dist_azi::apply(b1_lon, b1_lat, lon, lat, spheroid); dist_b1_ip = res_b1_ip.distance; if (! same_direction(res_b1_ip.azimuth, res_b1_b2.azimuth)) { dist_b1_ip = -dist_b1_ip; } bool is_on_b = segment_ratio(dist_b1_ip, dist_b1_b2).on_segment(); // NOTE: not fully consistent with equals_point_point() since radians are always used. bool is_on_b1 = math::equals(lon, b1_lon) && math::equals(lat, b1_lat); bool is_on_b2 = math::equals(lon, b2_lon) && math::equals(lat, b2_lat); if (! (is_on_b || is_on_b1 || is_on_b2)) { return false; } typedef typename FormulaPolicy::template inverse inverse_dist; ip_flag = ipi_inters; if (is_on_b1) { lon = b1_lon; lat = b1_lat; dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency dist_b1_ip = 0; ip_flag = ipi_at_b1; } else if (is_on_b2) { lon = b2_lon; lat = b2_lat; dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency dist_b1_ip = res_b1_b2.distance; ip_flag = ipi_at_b2; } if (is_on_a1) { lon = a1_lon; lat = a1_lat; dist_a1_ip = 0; dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency ip_flag = ipi_at_a1; } else if (is_on_a2) { lon = a2_lon; lat = a2_lat; dist_a1_ip = res_a1_a2.distance; dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency ip_flag = ipi_at_a2; } return true; } template static inline bool is_endpoint_equal(CalcT const& dist, P1 const& ai, P2 const& b1) { static CalcT const c0 = 0; return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1)); } template static inline bool is_near(CalcT const& dist) { // NOTE: This strongly depends on the Inverse method CalcT const small_number = CalcT(std::is_same::value ? 0.0001 : 0.00000001); return math::abs(dist) <= small_number; } template static inline int position_value(ProjCoord1 const& ca1, ProjCoord2 const& cb1, ProjCoord2 const& cb2) { // S1x 0 1 2 3 4 // S2 |----------> return math::equals(ca1, cb1) ? 1 : math::equals(ca1, cb2) ? 3 : cb1 < cb2 ? ( ca1 < cb1 ? 0 : ca1 > cb2 ? 4 : 2 ) : ( ca1 > cb1 ? 0 : ca1 < cb2 ? 4 : 2 ); } template static inline bool same_direction(CalcT const& azimuth1, CalcT const& azimuth2) { // distance between two angles normalized to (-180, 180] CalcT const angle_diff = math::longitude_distance_signed(azimuth1, azimuth2); return math::abs(angle_diff) <= math::half_pi(); } template static inline void sides_reverse_segment(side_info & sides) { // names assuming segment A is reversed (Which == 0) int a1_wrt_b = sides.template get(); int a2_wrt_b = sides.template get(); std::swap(a1_wrt_b, a2_wrt_b); sides.template set(a1_wrt_b, a2_wrt_b); int b1_wrt_a = sides.template get<1 - Which, 0>(); int b2_wrt_a = sides.template get<1 - Which, 1>(); sides.template set<1 - Which>(-b1_wrt_a, -b2_wrt_a); } static inline void ip_flag_reverse_segment(intersection_point_flag & ip_flag, intersection_point_flag const& ipi_at_p1, intersection_point_flag const& ipi_at_p2) { ip_flag = ip_flag == ipi_at_p1 ? ipi_at_p2 : ip_flag == ipi_at_p2 ? ipi_at_p1 : ip_flag; } template static inline bool equals_point_point(Point1 const& point1, Point2 const& point2) { return strategy::within::spherical_point_point::apply(point1, point2); } private: Spheroid m_spheroid; }; }} // namespace strategy::intersection }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP