// Boost.Geometry // Copyright (c) 2018 Adam Wulkiewicz, Lodz, Poland. // Copyright (c) 2015-2020 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_FORMULAS_ANDOYER_INVERSE_HPP #define BOOST_GEOMETRY_FORMULAS_ANDOYER_INVERSE_HPP #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace formula { /*! \brief The solution of the inverse problem of geodesics on latlong coordinates, Forsyth-Andoyer-Lambert type approximation with first order terms. \author See - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965 http://www.dtic.mil/docs/citations/AD0627893 - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970 http://www.dtic.mil/docs/citations/AD703541 */ template < typename CT, bool EnableDistance, bool EnableAzimuth, bool EnableReverseAzimuth = false, bool EnableReducedLength = false, bool EnableGeodesicScale = false > class andoyer_inverse { static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale; static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities; static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities; static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities; public: typedef result_inverse result_type; template static inline result_type apply(T1 const& lon1, T1 const& lat1, T2 const& lon2, T2 const& lat2, Spheroid const& spheroid) { result_type result; // coordinates in radians if ( math::equals(lon1, lon2) && math::equals(lat1, lat2) ) { return result; } CT const c0 = CT(0); CT const c1 = CT(1); CT const pi = math::pi(); CT const f = formula::flattening(spheroid); CT const dlon = lon2 - lon1; CT const sin_dlon = sin(dlon); CT const cos_dlon = cos(dlon); CT const sin_lat1 = sin(lat1); CT const cos_lat1 = cos(lat1); CT const sin_lat2 = sin(lat2); CT const cos_lat2 = cos(lat2); // H,G,T = infinity if cos_d = 1 or cos_d = -1 // lat1 == +-90 && lat2 == +-90 // lat1 == lat2 && lon1 == lon2 CT cos_d = sin_lat1*sin_lat2 + cos_lat1*cos_lat2*cos_dlon; // on some platforms cos_d may be outside valid range if (cos_d < -c1) cos_d = -c1; else if (cos_d > c1) cos_d = c1; CT const d = acos(cos_d); // [0, pi] CT const sin_d = sin(d); // [-1, 1] if ( BOOST_GEOMETRY_CONDITION(EnableDistance) ) { CT const K = math::sqr(sin_lat1-sin_lat2); CT const L = math::sqr(sin_lat1+sin_lat2); CT const three_sin_d = CT(3) * sin_d; CT const one_minus_cos_d = c1 - cos_d; CT const one_plus_cos_d = c1 + cos_d; // cos_d = 1 means that the points are very close // cos_d = -1 means that the points are antipodal CT const H = math::equals(one_minus_cos_d, c0) ? c0 : (d + three_sin_d) / one_minus_cos_d; CT const G = math::equals(one_plus_cos_d, c0) ? c0 : (d - three_sin_d) / one_plus_cos_d; CT const dd = -(f/CT(4))*(H*K+G*L); CT const a = CT(get_radius<0>(spheroid)); result.distance = a * (d + dd); } if ( BOOST_GEOMETRY_CONDITION(CalcAzimuths) ) { // sin_d = 0 <=> antipodal points (incl. poles) or very close if (math::equals(sin_d, c0)) { // T = inf // dA = inf // azimuth = -inf // TODO: The following azimuths are inconsistent with distance // i.e. according to azimuths below a segment with antipodal endpoints // travels through the north pole, however the distance returned above // is the length of a segment traveling along the equator. // Furthermore, this special case handling is only done in andoyer // formula. // The most correct way of fixing it is to handle antipodal regions // correctly and consistently across all formulas. // points very close if (cos_d >= c0) { result.azimuth = c0; result.reverse_azimuth = c0; } // antipodal points else { // Set azimuth to 0 unless the first endpoint is the north pole if (! math::equals(sin_lat1, c1)) { result.azimuth = c0; result.reverse_azimuth = pi; } else { result.azimuth = pi; result.reverse_azimuth = c0; } } } else { CT const c2 = CT(2); CT A = c0; CT U = c0; if (math::equals(cos_lat2, c0)) { if (sin_lat2 < c0) { A = pi; } } else { CT const tan_lat2 = sin_lat2/cos_lat2; CT const M = cos_lat1*tan_lat2-sin_lat1*cos_dlon; A = atan2(sin_dlon, M); CT const sin_2A = sin(c2*A); U = (f/ c2)*math::sqr(cos_lat1)*sin_2A; } CT B = c0; CT V = c0; if (math::equals(cos_lat1, c0)) { if (sin_lat1 < c0) { B = pi; } } else { CT const tan_lat1 = sin_lat1/cos_lat1; CT const N = cos_lat2*tan_lat1-sin_lat2*cos_dlon; B = atan2(sin_dlon, N); CT const sin_2B = sin(c2*B); V = (f/ c2)*math::sqr(cos_lat2)*sin_2B; } CT const T = d / sin_d; // even with sin_d == 0 checked above if the second point // is somewhere in the antipodal area T may still be great // therefore dA and dB may be great and the resulting azimuths // may be some more or less arbitrary angles if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth)) { CT const dA = V*T - U; result.azimuth = A - dA; normalize_azimuth(result.azimuth, A, dA); } if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth)) { CT const dB = -U*T + V; if (B >= 0) result.reverse_azimuth = pi - B - dB; else result.reverse_azimuth = -pi - B - dB; normalize_azimuth(result.reverse_azimuth, B, dB); } } } if (BOOST_GEOMETRY_CONDITION(CalcQuantities)) { CT const b = CT(get_radius<2>(spheroid)); typedef differential_quantities quantities; quantities::apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2, result.azimuth, result.reverse_azimuth, b, f, result.reduced_length, result.geodesic_scale); } return result; } private: static inline void normalize_azimuth(CT & azimuth, CT const& A, CT const& dA) { CT const c0 = 0; if (A >= c0) // A indicates Eastern hemisphere { if (dA >= c0) // A altered towards 0 { if (azimuth < c0) { azimuth = c0; } } else // dA < 0, A altered towards pi { CT const pi = math::pi(); if (azimuth > pi) { azimuth = pi; } } } else // A indicates Western hemisphere { if (dA <= c0) // A altered towards 0 { if (azimuth > c0) { azimuth = c0; } } else // dA > 0, A altered towards -pi { CT const minus_pi = -math::pi(); if (azimuth < minus_pi) { azimuth = minus_pi; } } } } }; }}} // namespace boost::geometry::formula #endif // BOOST_GEOMETRY_FORMULAS_ANDOYER_INVERSE_HPP