// Copyright 2019 Hans Dembinski // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HISTOGRAM_DETAIL_FILL_N_HPP #define BOOST_HISTOGRAM_DETAIL_FILL_N_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace histogram { namespace detail { namespace dtl = boost::histogram::detail; template using is_convertible_to_any_value_type = mp11::mp_any_of_q, mp11::mp_bind_front>; template auto to_ptr_size(const T& x) { return static_if>( [](const auto& x) { return std::make_pair(&x, static_cast(0)); }, [](const auto& x) { return std::make_pair(dtl::data(x), dtl::size(x)); }, x); } template decltype(auto) maybe_visit(F&& f, V&& v) { return static_if>>( [](auto&& f, auto&& v) { return variant2::visit(std::forward(f), std::forward(v)); }, [](auto&& f, auto&& v) { return std::forward(f)(std::forward(v)); }, std::forward(f), std::forward(v)); } template struct index_visitor { using index_type = Index; using pointer = index_type*; using value_type = axis::traits::value_type; using Opt = axis::traits::get_options; Axis& axis_; const std::size_t stride_, start_, size_; // start and size of value collection const pointer begin_; axis::index_type* shift_; index_visitor(Axis& a, std::size_t& str, const std::size_t& sta, const std::size_t& si, const pointer it, axis::index_type* shift) : axis_(a), stride_(str), start_(sta), size_(si), begin_(it), shift_(shift) {} template void call_2(std::true_type, pointer it, const T& x) const { // must use this code for all axes if one of them is growing axis::index_type shift; linearize_growth(*it, shift, stride_, axis_, try_cast(x)); if (shift > 0) { // shift previous indices, because axis zero-point has changed while (it != begin_) *--it += static_cast(shift) * stride_; *shift_ += shift; } } template void call_2(std::false_type, pointer it, const T& x) const { // no axis is growing linearize(*it, stride_, axis_, try_cast(x)); } template void call_1(std::false_type, const T& iterable) const { // T is iterable; fill N values const auto* tp = dtl::data(iterable) + start_; for (auto it = begin_; it != begin_ + size_; ++it) call_2(IsGrowing{}, it, *tp++); } template void call_1(std::true_type, const T& value) const { // T is compatible value; fill single value N times index_type idx{*begin_}; call_2(IsGrowing{}, &idx, value); if (is_valid(idx)) { const auto delta = static_cast(idx) - static_cast(*begin_); for (auto&& i : make_span(begin_, size_)) i += delta; } else std::fill(begin_, begin_ + size_, invalid_index); } template void operator()(const T& iterable_or_value) const { call_1(mp11::mp_bool<(std::is_convertible::value || !is_iterable::value)>{}, iterable_or_value); } }; template void fill_n_indices(Index* indices, const std::size_t start, const std::size_t size, const std::size_t offset, S& storage, Axes& axes, const T* viter) { axis::index_type extents[buffer_size::value]; axis::index_type shifts[buffer_size::value]; for_each_axis(axes, [eit = extents, sit = shifts](const auto& a) mutable { *sit++ = 0; *eit++ = axis::traits::extent(a); }); // LCOV_EXCL_LINE: gcc-8 is missing this line for no reason // offset must be zero for growing axes using IsGrowing = has_growing_axis; std::fill(indices, indices + size, IsGrowing::value ? 0 : offset); for_each_axis(axes, [&, stride = static_cast(1), pshift = shifts](auto& axis) mutable { using Axis = std::decay_t; maybe_visit( index_visitor{axis, stride, start, size, indices, pshift}, *viter++); stride *= static_cast(axis::traits::extent(axis)); ++pshift; }); bool update_needed = false; for_each_axis(axes, [&update_needed, eit = extents](const auto& a) mutable { update_needed |= *eit++ != axis::traits::extent(a); }); if (update_needed) { storage_grower g(axes); g.from_extents(extents); g.apply(storage, shifts); } } template void fill_n_storage(S& s, const Index idx, Ts&&... p) noexcept { if (is_valid(idx)) { assert(idx < s.size()); fill_storage_element(s[idx], *p.first...); } // operator folding emulation (void)std::initializer_list{(p.second ? (++p.first, 0) : 0)...}; } template void fill_n_storage(S& s, const Index idx, weight_type&& w, Ts&&... ps) noexcept { if (is_valid(idx)) { assert(idx < s.size()); fill_storage_element(s[idx], weight(*w.value.first), *ps.first...); } if (w.value.second) ++w.value.first; // operator folding emulation (void)std::initializer_list{(ps.second ? (++ps.first, 0) : 0)...}; } // general Nd treatment template void fill_n_nd(const std::size_t offset, S& storage, A& axes, const std::size_t vsize, const T* values, Ts&&... ts) { constexpr std::size_t buffer_size = 1ul << 14; Index indices[buffer_size]; /* Parallelization options. A) Run the whole fill2 method in parallel, each thread fills its own buffer of indices, synchronization (atomics) are needed to synchronize the incrementing of the storage cells. This leads to a lot of congestion for small histograms. B) Run only fill_n_indices in parallel, subsections of the indices buffer can be filled by different threads. The final loop that fills the storage runs in the main thread, this requires no synchronization for the storage, cells do not need to support atomic operations. C) Like B), then sort the indices in the main thread and fill the storage in parallel, where each thread uses a disjunct set of indices. This should create less congestion and requires no synchronization for the storage. Note on C): Let's say we have an axis with 5 bins (with *flow to simplify). Then after filling 10 values, converting to indices and sorting, the index buffer may look like this: 0 0 0 1 2 2 2 4 4 5. Let's use two threads to fill the storage. Still in the main thread, we compute an iterator to the middle of the index buffer and move it to the right until the pointee changes. Now we have two ranges which contain disjunct sets of indices. We pass these ranges to the threads which then fill the storage. Since the threads by construction do not compete to increment the same cell, no further synchronization is required. In all cases, growing axes cannot be parallelized. */ for (std::size_t start = 0; start < vsize; start += buffer_size) { const std::size_t n = std::min(buffer_size, vsize - start); // fill buffer of indices... fill_n_indices(indices, start, n, offset, storage, axes, values); // ...and fill corresponding storage cells for (auto&& idx : make_span(indices, n)) fill_n_storage(storage, idx, std::forward(ts)...); } } template void fill_n_1(const std::size_t offset, S& storage, std::tuple& axes, const std::size_t vsize, const T* values, Us&&... us) { using index_type = mp11::mp_if>, optional_index, std::size_t>; fill_n_nd(offset, storage, axes, vsize, values, std::forward(us)...); } template void fill_n_1(const std::size_t offset, S& storage, A& axes, const std::size_t vsize, const T* values, Us&&... us) { bool all_inclusive = true; for_each_axis(axes, [&](const auto& ax) { all_inclusive &= axis::traits::inclusive(ax); }); if (axes_rank(axes) == 1) { axis::visit( [&](auto& ax) { std::tuple axes{ax}; fill_n_1(offset, storage, axes, vsize, values, std::forward(us)...); }, axes[0]); } else { if (all_inclusive) fill_n_nd(offset, storage, axes, vsize, values, std::forward(us)...); else fill_n_nd(offset, storage, axes, vsize, values, std::forward(us)...); } } template std::size_t get_total_size(const A& axes, const dtl::span& values) { // supported cases (T = value type; CT = containter of T; V = variant): // - span: for any histogram, N == rank // - span, N>: for any histogram, N == rank assert(axes_rank(axes) == values.size()); constexpr auto unset = static_cast(-1); std::size_t size = unset; for_each_axis(axes, [&size, vit = values.begin()](const auto& ax) mutable { using AV = axis::traits::value_type>; maybe_visit( [&size](const auto& v) { // v is either convertible to value or a sequence of values using V = std::remove_const_t>; static_if_c<(std::is_convertible::value || !is_iterable::value)>( [](const auto&) {}, [&size](const auto& v) { const auto n = dtl::size(v); // must repeat this here for msvc :( constexpr auto unset = static_cast(-1); if (size == unset) size = dtl::size(v); else if (size != n) BOOST_THROW_EXCEPTION( std::invalid_argument("spans must have compatible lengths")); }, v); }, *vit++); }); // if all arguments are not iterables, return size of 1 return size == unset ? 1 : size; } inline void fill_n_check_extra_args(std::size_t) noexcept {} template void fill_n_check_extra_args(std::size_t size, T&& x, Ts&&... ts) { // sequences must have same lengths, but sequences of length 0 are broadcast if (x.second != 0 && x.second != size) BOOST_THROW_EXCEPTION(std::invalid_argument("spans must have compatible lengths")); fill_n_check_extra_args(size, std::forward(ts)...); } template void fill_n_check_extra_args(std::size_t size, weight_type&& w, Ts&&... ts) { fill_n_check_extra_args(size, w.value, std::forward(ts)...); } template void fill_n(std::true_type, const std::size_t offset, S& storage, A& axes, const dtl::span values, Us&&... us) { // supported cases (T = value type; CT = containter of T; V = variant): // - span: only valid for 1D histogram, N > 1 allowed // - span: for any histogram, N == rank // - span, N>: for any histogram, N == rank static_if>( [&](const auto& values, auto&&... us) { // T matches one of the axis value types, must be 1D special case if (axes_rank(axes) != 1) BOOST_THROW_EXCEPTION( std::invalid_argument("number of arguments must match histogram rank")); fill_n_check_extra_args(values.size(), std::forward(us)...); fill_n_1(offset, storage, axes, values.size(), &values, std::forward(us)...); }, [&](const auto& values, auto&&... us) { // generic ND case if (axes_rank(axes) != values.size()) BOOST_THROW_EXCEPTION( std::invalid_argument("number of arguments must match histogram rank")); const auto vsize = get_total_size(axes, values); fill_n_check_extra_args(vsize, std::forward(us)...); fill_n_1(offset, storage, axes, vsize, values.data(), std::forward(us)...); }, values, std::forward(us)...); } // empty implementation for bad arguments to stop compiler from showing internals template void fill_n(std::false_type, Ts...) {} } // namespace detail } // namespace histogram } // namespace boost #endif // BOOST_HISTOGRAM_DETAIL_FILL_N_HPP