// // Copyright 2005-2007 Adobe Systems Incorporated // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // #ifndef BOOST_GIL_STEP_ITERATOR_HPP #define BOOST_GIL_STEP_ITERATOR_HPP #include #include #include #include #include #include #include #include namespace boost { namespace gil { /// \defgroup PixelIteratorModelStepPtr step iterators /// \ingroup PixelIteratorModel /// \brief Iterators that allow for specifying the step between two adjacent values namespace detail { /// \ingroup PixelIteratorModelStepPtr /// \brief An adaptor over an existing iterator that changes the step unit /// /// (i.e. distance(it,it+1)) by a given predicate. Instead of calling base's /// operators ++, --, +=, -=, etc. the adaptor is using the passed policy object SFn /// for advancing and for computing the distance between iterators. template // A policy object that can compute the distance between two iterators of type Iterator // and can advance an iterator of type Iterator a given number of Iterator's units class step_iterator_adaptor : public iterator_adaptor { public: using parent_t = iterator_adaptor; using base_difference_type = typename std::iterator_traits::difference_type; using difference_type = typename SFn::difference_type; using reference = typename std::iterator_traits::reference; step_iterator_adaptor() {} step_iterator_adaptor(const Iterator& it, SFn step_fn=SFn()) : parent_t(it), _step_fn(step_fn) {} difference_type step() const { return _step_fn.step(); } protected: SFn _step_fn; private: friend class boost::iterator_core_access; void increment() { _step_fn.advance(this->base_reference(),1); } void decrement() { _step_fn.advance(this->base_reference(),-1); } void advance(base_difference_type d) { _step_fn.advance(this->base_reference(),d); } difference_type distance_to(const step_iterator_adaptor& it) const { return _step_fn.difference(this->base_reference(),it.base_reference()); } }; // although iterator_adaptor defines these, the default implementation computes distance and compares for zero. // it is often faster to just apply the relation operator to the base template inline bool operator>(const step_iterator_adaptor& p1, const step_iterator_adaptor& p2) { return p1.step()>0 ? p1.base()> p2.base() : p1.base()< p2.base(); } template inline bool operator<(const step_iterator_adaptor& p1, const step_iterator_adaptor& p2) { return p1.step()>0 ? p1.base()< p2.base() : p1.base()> p2.base(); } template inline bool operator>=(const step_iterator_adaptor& p1, const step_iterator_adaptor& p2) { return p1.step()>0 ? p1.base()>=p2.base() : p1.base()<=p2.base(); } template inline bool operator<=(const step_iterator_adaptor& p1, const step_iterator_adaptor& p2) { return p1.step()>0 ? p1.base()<=p2.base() : p1.base()>=p2.base(); } template inline bool operator==(const step_iterator_adaptor& p1, const step_iterator_adaptor& p2) { return p1.base()==p2.base(); } template inline bool operator!=(const step_iterator_adaptor& p1, const step_iterator_adaptor& p2) { return p1.base()!=p2.base(); } } // namespace detail //////////////////////////////////////////////////////////////////////////////////////// /// MEMORY-BASED STEP ITERATOR //////////////////////////////////////////////////////////////////////////////////////// /// \class memory_based_step_iterator /// \ingroup PixelIteratorModelStepPtr PixelBasedModel /// \brief Iterator with dynamically specified step in memory units (bytes or bits). Models StepIteratorConcept, IteratorAdaptorConcept, MemoryBasedIteratorConcept, PixelIteratorConcept, HasDynamicXStepTypeConcept /// /// A refinement of step_iterator_adaptor that uses a dynamic parameter for the step /// which is specified in memory units, such as bytes or bits /// /// Pixel step iterators are used to provide iteration over non-adjacent pixels. /// Common use is a vertical traversal, where the step is the row stride. /// /// Another application is as a sub-channel view. For example, a red intensity image over /// interleaved RGB data would use a step iterator adaptor with step sizeof(channel_t)*3 /// In the latter example the step size could be fixed at compile time for efficiency. /// Compile-time fixed step can be implemented by providing a step function object that takes the step as a template //////////////////////////////////////////////////////////////////////////////////////// /// \ingroup PixelIteratorModelStepPtr /// \brief function object that returns the memory unit distance between two iterators and advances a given iterator a given number of mem units (bytes or bits) template struct memunit_step_fn { using difference_type = std::ptrdiff_t; memunit_step_fn(difference_type step=memunit_step(Iterator())) : _step(step) {} difference_type difference(const Iterator& it1, const Iterator& it2) const { return memunit_distance(it1,it2)/_step; } void advance(Iterator& it, difference_type d) const { memunit_advance(it,d*_step); } difference_type step() const { return _step; } void set_step(std::ptrdiff_t step) { _step=step; } private: BOOST_GIL_CLASS_REQUIRE(Iterator, boost::gil, MemoryBasedIteratorConcept) difference_type _step; }; template class memory_based_step_iterator : public detail::step_iterator_adaptor, Iterator, memunit_step_fn> { BOOST_GIL_CLASS_REQUIRE(Iterator, boost::gil, MemoryBasedIteratorConcept) public: using parent_t = detail::step_iterator_adaptor, Iterator, memunit_step_fn>; using reference = typename parent_t::reference; using difference_type = typename parent_t::difference_type; using x_iterator = Iterator; memory_based_step_iterator() : parent_t(Iterator()) {} memory_based_step_iterator(Iterator it, std::ptrdiff_t memunit_step) : parent_t(it, memunit_step_fn(memunit_step)) {} template memory_based_step_iterator(const memory_based_step_iterator& it) : parent_t(it.base(), memunit_step_fn(it.step())) {} /// For some reason operator[] provided by iterator_adaptor returns a custom class that is convertible to reference /// We require our own reference because it is registered in iterator_traits reference operator[](difference_type d) const { return *(*this+d); } void set_step(std::ptrdiff_t memunit_step) { this->_step_fn.set_step(memunit_step); } x_iterator& base() { return parent_t::base_reference(); } x_iterator const& base() const { return parent_t::base_reference(); } }; template struct const_iterator_type> { using type = memory_based_step_iterator::type>; }; template struct iterator_is_mutable> : public iterator_is_mutable {}; ///////////////////////////// // IteratorAdaptorConcept ///////////////////////////// template struct is_iterator_adaptor> : std::true_type {}; template struct iterator_adaptor_get_base> { using type = Iterator; }; template struct iterator_adaptor_rebind, NewBaseIterator> { using type = memory_based_step_iterator; }; ///////////////////////////// // PixelBasedConcept ///////////////////////////// template struct color_space_type> : public color_space_type {}; template struct channel_mapping_type> : public channel_mapping_type {}; template struct is_planar> : public is_planar {}; template struct channel_type> : public channel_type {}; ///////////////////////////// // MemoryBasedIteratorConcept ///////////////////////////// template struct byte_to_memunit> : public byte_to_memunit {}; template inline std::ptrdiff_t memunit_step(const memory_based_step_iterator& p) { return p.step(); } template inline std::ptrdiff_t memunit_distance(const memory_based_step_iterator& p1, const memory_based_step_iterator& p2) { return memunit_distance(p1.base(),p2.base()); } template inline void memunit_advance(memory_based_step_iterator& p, std::ptrdiff_t diff) { memunit_advance(p.base(), diff); } template inline memory_based_step_iterator memunit_advanced(const memory_based_step_iterator& p, std::ptrdiff_t diff) { return memory_based_step_iterator(memunit_advanced(p.base(), diff),p.step()); } template inline typename std::iterator_traits::reference memunit_advanced_ref(const memory_based_step_iterator& p, std::ptrdiff_t diff) { return memunit_advanced_ref(p.base(), diff); } ///////////////////////////// // HasDynamicXStepTypeConcept ///////////////////////////// template struct dynamic_x_step_type> { using type = memory_based_step_iterator; }; // For step iterators, pass the function object to the base template struct iterator_add_deref,Deref> { BOOST_GIL_CLASS_REQUIRE(Deref, boost::gil, PixelDereferenceAdaptorConcept) using type = memory_based_step_iterator::type>; static type make(const memory_based_step_iterator& it, const Deref& d) { return type(iterator_add_deref::make(it.base(),d),it.step()); } }; //////////////////////////////////////////////////////////////////////////////////////// /// make_step_iterator //////////////////////////////////////////////////////////////////////////////////////// template typename dynamic_x_step_type::type make_step_iterator(const I& it, std::ptrdiff_t step); namespace detail { // if the iterator is a plain base iterator (non-adaptor), wraps it in memory_based_step_iterator template auto make_step_iterator_impl(I const& it, std::ptrdiff_t step, std::false_type) -> typename dynamic_x_step_type::type { return memory_based_step_iterator(it, step); } // If the iterator is compound, put the step in its base template auto make_step_iterator_impl(I const& it, std::ptrdiff_t step, std::true_type) -> typename dynamic_x_step_type::type { return make_step_iterator(it.base(), step); } // If the iterator is memory_based_step_iterator, change the step template auto make_step_iterator_impl( memory_based_step_iterator const& it, std::ptrdiff_t step, std::true_type) -> memory_based_step_iterator { return memory_based_step_iterator(it.base(), step); } } // namespace detail /// \brief Constructs a step iterator from a base iterator and a step. /// /// To construct a step iterator from a given iterator Iterator and a given step, if Iterator does not /// already have a dynamic step, we wrap it in a memory_based_step_iterator. Otherwise we /// do a compile-time traversal of the chain of iterator adaptors to locate the step iterator /// and then set it step to the new one. /// /// The step iterator of Iterator is not always memory_based_step_iterator. For example, Iterator may /// already be a memory_based_step_iterator, in which case it will be inefficient to stack them; /// we can obtain the same result by multiplying their steps. Note that for Iterator to be a /// step iterator it does not necessarily have to have the form memory_based_step_iterator. /// The step iterator can be wrapped inside another iterator. Also, it may not have the /// type memory_based_step_iterator, but it could be a user-provided type. template // Models MemoryBasedIteratorConcept, HasDynamicXStepTypeConcept typename dynamic_x_step_type::type make_step_iterator(const I& it, std::ptrdiff_t step) { return detail::make_step_iterator_impl(it, step, typename is_iterator_adaptor::type()); } }} // namespace boost::gil #endif