// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_ #define BASE_NUMERICS_SAFE_CONVERSIONS_H_ #include #include #include #include #include "base/numerics/safe_conversions_impl.h" #if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__)) #include "base/numerics/safe_conversions_arm_impl.h" #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1) #else #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0) #endif #if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS #include #endif namespace base { namespace internal { #if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS template struct SaturateFastAsmOp { static constexpr bool is_supported = false; static constexpr Dst Do(Src) { // Force a compile failure if instantiated. return CheckOnFailure::template HandleFailure(); } }; #endif // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS #undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS // The following special case a few specific integer conversions where we can // eke out better performance than range checking. template struct IsValueInRangeFastOp { static constexpr bool is_supported = false; static constexpr bool Do(Src value) { // Force a compile failure if instantiated. return CheckOnFailure::template HandleFailure(); } }; // Signed to signed range comparison. template struct IsValueInRangeFastOp< Dst, Src, typename std::enable_if< std::is_integral::value && std::is_integral::value && std::is_signed::value && std::is_signed::value && !IsTypeInRangeForNumericType::value>::type> { static constexpr bool is_supported = true; static constexpr bool Do(Src value) { // Just downcast to the smaller type, sign extend it back to the original // type, and then see if it matches the original value. return value == static_cast(value); } }; // Signed to unsigned range comparison. template struct IsValueInRangeFastOp< Dst, Src, typename std::enable_if< std::is_integral::value && std::is_integral::value && !std::is_signed::value && std::is_signed::value && !IsTypeInRangeForNumericType::value>::type> { static constexpr bool is_supported = true; static constexpr bool Do(Src value) { // We cast a signed as unsigned to overflow negative values to the top, // then compare against whichever maximum is smaller, as our upper bound. return as_unsigned(value) <= as_unsigned(CommonMax()); } }; // Convenience function that returns true if the supplied value is in range // for the destination type. template constexpr bool IsValueInRangeForNumericType(Src value) { using SrcType = typename internal::UnderlyingType::type; return internal::IsValueInRangeFastOp::is_supported ? internal::IsValueInRangeFastOp::Do( static_cast(value)) : internal::DstRangeRelationToSrcRange( static_cast(value)) .IsValid(); } // checked_cast<> is analogous to static_cast<> for numeric types, // except that it CHECKs that the specified numeric conversion will not // overflow or underflow. NaN source will always trigger a CHECK. template constexpr Dst checked_cast(Src value) { // This throws a compile-time error on evaluating the constexpr if it can be // determined at compile-time as failing, otherwise it will CHECK at runtime. using SrcType = typename internal::UnderlyingType::type; return BASE_NUMERICS_LIKELY((IsValueInRangeForNumericType(value))) ? static_cast(static_cast(value)) : CheckHandler::template HandleFailure(); } // Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN. // You may provide your own limits (e.g. to saturated_cast) so long as you // implement all of the static constexpr member functions in the class below. template struct SaturationDefaultLimits : public std::numeric_limits { static constexpr T NaN() { return std::numeric_limits::has_quiet_NaN ? std::numeric_limits::quiet_NaN() : T(); } using std::numeric_limits::max; static constexpr T Overflow() { return std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : std::numeric_limits::max(); } using std::numeric_limits::lowest; static constexpr T Underflow() { return std::numeric_limits::has_infinity ? std::numeric_limits::infinity() * -1 : std::numeric_limits::lowest(); } }; template class S, typename Src> constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) { // For some reason clang generates much better code when the branch is // structured exactly this way, rather than a sequence of checks. return !constraint.IsOverflowFlagSet() ? (!constraint.IsUnderflowFlagSet() ? static_cast(value) : S::Underflow()) // Skip this check for integral Src, which cannot be NaN. : (std::is_integral::value || !constraint.IsUnderflowFlagSet() ? S::Overflow() : S::NaN()); } // We can reduce the number of conditions and get slightly better performance // for normal signed and unsigned integer ranges. And in the specific case of // Arm, we can use the optimized saturation instructions. template struct SaturateFastOp { static constexpr bool is_supported = false; static constexpr Dst Do(Src value) { // Force a compile failure if instantiated. return CheckOnFailure::template HandleFailure(); } }; template struct SaturateFastOp< Dst, Src, typename std::enable_if::value && std::is_integral::value && SaturateFastAsmOp::is_supported>::type> { static constexpr bool is_supported = true; static constexpr Dst Do(Src value) { return SaturateFastAsmOp::Do(value); } }; template struct SaturateFastOp< Dst, Src, typename std::enable_if::value && std::is_integral::value && !SaturateFastAsmOp::is_supported>::type> { static constexpr bool is_supported = true; static constexpr Dst Do(Src value) { // The exact order of the following is structured to hit the correct // optimization heuristics across compilers. Do not change without // checking the emitted code. const Dst saturated = CommonMaxOrMin( IsMaxInRangeForNumericType() || (!IsMinInRangeForNumericType() && IsValueNegative(value))); return BASE_NUMERICS_LIKELY(IsValueInRangeForNumericType(value)) ? static_cast(value) : saturated; } }; // saturated_cast<> is analogous to static_cast<> for numeric types, except // that the specified numeric conversion will saturate by default rather than // overflow or underflow, and NaN assignment to an integral will return 0. // All boundary condition behaviors can be overriden with a custom handler. template class SaturationHandler = SaturationDefaultLimits, typename Src> constexpr Dst saturated_cast(Src value) { using SrcType = typename UnderlyingType::type; return !IsCompileTimeConstant(value) && SaturateFastOp::is_supported && std::is_same, SaturationDefaultLimits>::value ? SaturateFastOp::Do(static_cast(value)) : saturated_cast_impl( static_cast(value), DstRangeRelationToSrcRange( static_cast(value))); } // strict_cast<> is analogous to static_cast<> for numeric types, except that // it will cause a compile failure if the destination type is not large enough // to contain any value in the source type. It performs no runtime checking. template constexpr Dst strict_cast(Src value) { using SrcType = typename UnderlyingType::type; static_assert(UnderlyingType::is_numeric, "Argument must be numeric."); static_assert(std::is_arithmetic::value, "Result must be numeric."); // If you got here from a compiler error, it's because you tried to assign // from a source type to a destination type that has insufficient range. // The solution may be to change the destination type you're assigning to, // and use one large enough to represent the source. // Alternatively, you may be better served with the checked_cast<> or // saturated_cast<> template functions for your particular use case. static_assert(StaticDstRangeRelationToSrcRange::value == NUMERIC_RANGE_CONTAINED, "The source type is out of range for the destination type. " "Please see strict_cast<> comments for more information."); return static_cast(static_cast(value)); } // Some wrappers to statically check that a type is in range. template struct IsNumericRangeContained { static constexpr bool value = false; }; template struct IsNumericRangeContained< Dst, Src, typename std::enable_if::value && ArithmeticOrUnderlyingEnum::value>::type> { static constexpr bool value = StaticDstRangeRelationToSrcRange::value == NUMERIC_RANGE_CONTAINED; }; // StrictNumeric implements compile time range checking between numeric types by // wrapping assignment operations in a strict_cast. This class is intended to be // used for function arguments and return types, to ensure the destination type // can always contain the source type. This is essentially the same as enforcing // -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied // incrementally at API boundaries, making it easier to convert code so that it // compiles cleanly with truncation warnings enabled. // This template should introduce no runtime overhead, but it also provides no // runtime checking of any of the associated mathematical operations. Use // CheckedNumeric for runtime range checks of the actual value being assigned. template class StrictNumeric { public: using type = T; constexpr StrictNumeric() : value_(0) {} // Copy constructor. template constexpr StrictNumeric(const StrictNumeric& rhs) : value_(strict_cast(rhs.value_)) {} // This is not an explicit constructor because we implicitly upgrade regular // numerics to StrictNumerics to make them easier to use. template constexpr StrictNumeric(Src value) // NOLINT(runtime/explicit) : value_(strict_cast(value)) {} // If you got here from a compiler error, it's because you tried to assign // from a source type to a destination type that has insufficient range. // The solution may be to change the destination type you're assigning to, // and use one large enough to represent the source. // If you're assigning from a CheckedNumeric<> class, you may be able to use // the AssignIfValid() member function, specify a narrower destination type to // the member value functions (e.g. val.template ValueOrDie()), use one // of the value helper functions (e.g. ValueOrDieForType(val)). // If you've encountered an _ambiguous overload_ you can use a static_cast<> // to explicitly cast the result to the destination type. // If none of that works, you may be better served with the checked_cast<> or // saturated_cast<> template functions for your particular use case. template ::value>::type* = nullptr> constexpr operator Dst() const { return static_cast::type>(value_); } private: const T value_; }; // Convience wrapper returns a StrictNumeric from the provided arithmetic type. template constexpr StrictNumeric::type> MakeStrictNum( const T value) { return value; } #if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS // Overload the ostream output operator to make logging work nicely. template std::ostream& operator<<(std::ostream& os, const StrictNumeric& value) { os << static_cast(value); return os; } #endif #define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \ template ::value>::type* = nullptr> \ constexpr bool operator OP(const L lhs, const R rhs) { \ return SafeCompare::type, \ typename UnderlyingType::type>(lhs, rhs); \ } BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=) } // namespace internal using internal::as_signed; using internal::as_unsigned; using internal::checked_cast; using internal::strict_cast; using internal::saturated_cast; using internal::SafeUnsignedAbs; using internal::StrictNumeric; using internal::MakeStrictNum; using internal::IsValueInRangeForNumericType; using internal::IsTypeInRangeForNumericType; using internal::IsValueNegative; // Explicitly make a shorter size_t alias for convenience. using SizeT = StrictNumeric; // floating -> integral conversions that saturate and thus can actually return // an integral type. In most cases, these should be preferred over the std:: // versions. template ::value && std::is_floating_point::value>> Dst ClampFloor(Src value) { return saturated_cast(std::floor(value)); } template ::value && std::is_floating_point::value>> Dst ClampCeil(Src value) { return saturated_cast(std::ceil(value)); } template ::value && std::is_floating_point::value>> Dst ClampRound(Src value) { const Src rounded = (value >= 0.0f) ? std::floor(value + 0.5f) : std::ceil(value - 0.5f); return saturated_cast(rounded); } } // namespace base #endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_