// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // PLEASE READ: Do you really need a singleton? If possible, use a // function-local static of type base::NoDestructor instead: // // Factory& Factory::GetInstance() { // static base::NoDestructor instance; // return *instance; // } // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // // Singletons make it hard to determine the lifetime of an object, which can // lead to buggy code and spurious crashes. // // Instead of adding another singleton into the mix, try to identify either: // a) An existing singleton that can manage your object's lifetime // b) Locations where you can deterministically create the object and pass // into other objects // // If you absolutely need a singleton, please keep them as trivial as possible // and ideally a leaf dependency. Singletons get problematic when they attempt // to do too much in their destructor or have circular dependencies. #ifndef BASE_MEMORY_SINGLETON_H_ #define BASE_MEMORY_SINGLETON_H_ #include "base/at_exit.h" #include "base/atomicops.h" #include "base/base_export.h" #include "base/check_op.h" #include "base/lazy_instance_helpers.h" #include "base/macros.h" #include "base/threading/thread_restrictions.h" namespace base { // Default traits for Singleton. Calls operator new and operator delete on // the object. Registers automatic deletion at process exit. // Overload if you need arguments or another memory allocation function. template struct DefaultSingletonTraits { // Allocates the object. static Type* New() { // The parenthesis is very important here; it forces POD type // initialization. return new Type(); } // Destroys the object. static void Delete(Type* x) { delete x; } // Set to true to automatically register deletion of the object on process // exit. See below for the required call that makes this happen. static const bool kRegisterAtExit = true; #if DCHECK_IS_ON() // Set to false to disallow access on a non-joinable thread. This is // different from kRegisterAtExit because StaticMemorySingletonTraits allows // access on non-joinable threads, and gracefully handles this. static const bool kAllowedToAccessOnNonjoinableThread = false; #endif }; // Alternate traits for use with the Singleton. Identical to // DefaultSingletonTraits except that the Singleton will not be cleaned up // at exit. template struct LeakySingletonTraits : public DefaultSingletonTraits { static const bool kRegisterAtExit = false; #if DCHECK_IS_ON() static const bool kAllowedToAccessOnNonjoinableThread = true; #endif }; // Alternate traits for use with the Singleton. Allocates memory // for the singleton instance from a static buffer. The singleton will // be cleaned up at exit, but can't be revived after destruction unless // the ResurrectForTesting() method is called. // // This is useful for a certain category of things, notably logging and // tracing, where the singleton instance is of a type carefully constructed to // be safe to access post-destruction. // In logging and tracing you'll typically get stray calls at odd times, like // during static destruction, thread teardown and the like, and there's a // termination race on the heap-based singleton - e.g. if one thread calls // get(), but then another thread initiates AtExit processing, the first thread // may call into an object residing in unallocated memory. If the instance is // allocated from the data segment, then this is survivable. // // The destructor is to deallocate system resources, in this case to unregister // a callback the system will invoke when logging levels change. Note that // this is also used in e.g. Chrome Frame, where you have to allow for the // possibility of loading briefly into someone else's process space, and // so leaking is not an option, as that would sabotage the state of your host // process once you've unloaded. template struct StaticMemorySingletonTraits { // WARNING: User has to support a New() which returns null. static Type* New() { // Only constructs once and returns pointer; otherwise returns null. if (subtle::NoBarrier_AtomicExchange(&dead_, 1)) return nullptr; return new (buffer_) Type(); } static void Delete(Type* p) { if (p) p->Type::~Type(); } static const bool kRegisterAtExit = true; #if DCHECK_IS_ON() static const bool kAllowedToAccessOnNonjoinableThread = true; #endif static void ResurrectForTesting() { subtle::NoBarrier_Store(&dead_, 0); } private: alignas(Type) static char buffer_[sizeof(Type)]; // Signal the object was already deleted, so it is not revived. static subtle::Atomic32 dead_; }; template alignas(Type) char StaticMemorySingletonTraits::buffer_[sizeof(Type)]; template subtle::Atomic32 StaticMemorySingletonTraits::dead_ = 0; // The Singleton class manages a single // instance of Type which will be created on first use and will be destroyed at // normal process exit). The Trait::Delete function will not be called on // abnormal process exit. // // DifferentiatingType is used as a key to differentiate two different // singletons having the same memory allocation functions but serving a // different purpose. This is mainly used for Locks serving different purposes. // // Example usage: // // In your header: // namespace base { // template // struct DefaultSingletonTraits; // } // class FooClass { // public: // static FooClass* GetInstance(); <-- See comment below on this. // void Bar() { ... } // private: // FooClass() { ... } // friend struct base::DefaultSingletonTraits; // // DISALLOW_COPY_AND_ASSIGN(FooClass); // }; // // In your source file: // #include "base/memory/singleton.h" // FooClass* FooClass::GetInstance() { // return base::Singleton::get(); // } // // Or for leaky singletons: // #include "base/memory/singleton.h" // FooClass* FooClass::GetInstance() { // return base::Singleton< // FooClass, base::LeakySingletonTraits>::get(); // } // // And to call methods on FooClass: // FooClass::GetInstance()->Bar(); // // NOTE: The method accessing Singleton::get() has to be named as GetInstance // and it is important that FooClass::GetInstance() is not inlined in the // header. This makes sure that when source files from multiple targets include // this header they don't end up with different copies of the inlined code // creating multiple copies of the singleton. // // Singleton<> has no non-static members and doesn't need to actually be // instantiated. // // This class is itself thread-safe. The underlying Type must of course be // thread-safe if you want to use it concurrently. Two parameters may be tuned // depending on the user's requirements. // // Glossary: // RAE = kRegisterAtExit // // On every platform, if Traits::RAE is true, the singleton will be destroyed at // process exit. More precisely it uses AtExitManager which requires an // object of this type to be instantiated. AtExitManager mimics the semantics // of atexit() such as LIFO order but under Windows is safer to call. For more // information see at_exit.h. // // If Traits::RAE is false, the singleton will not be freed at process exit, // thus the singleton will be leaked if it is ever accessed. Traits::RAE // shouldn't be false unless absolutely necessary. Remember that the heap where // the object is allocated may be destroyed by the CRT anyway. // // Caveats: // (a) Every call to get(), operator->() and operator*() incurs some overhead // (16ns on my P4/2.8GHz) to check whether the object has already been // initialized. You may wish to cache the result of get(); it will not // change. // // (b) Your factory function must never throw an exception. This class is not // exception-safe. // template , typename DifferentiatingType = Type> class Singleton { private: // A class T using the Singleton pattern should declare a GetInstance() // method and call Singleton::get() from within that. T may also declare a // GetInstanceIfExists() method to invoke Singleton::GetIfExists(). friend Type; // This class is safe to be constructed and copy-constructed since it has no // member. // Returns a pointer to the one true instance of the class. static Type* get() { #if DCHECK_IS_ON() if (!Traits::kAllowedToAccessOnNonjoinableThread) ThreadRestrictions::AssertSingletonAllowed(); #endif return subtle::GetOrCreateLazyPointer( &instance_, &CreatorFunc, nullptr, Traits::kRegisterAtExit ? OnExit : nullptr, nullptr); } // Returns the same result as get() if the instance exists but doesn't // construct it (and returns null) if it doesn't. static Type* GetIfExists() { #if DCHECK_IS_ON() if (!Traits::kAllowedToAccessOnNonjoinableThread) ThreadRestrictions::AssertSingletonAllowed(); #endif if (!subtle::NoBarrier_Load(&instance_)) return nullptr; // Need to invoke get() nonetheless as some Traits return null after // destruction (even though |instance_| still holds garbage). return get(); } // Internal method used as an adaptor for GetOrCreateLazyPointer(). Do not use // outside of that use case. static Type* CreatorFunc(void* /* creator_arg*/) { return Traits::New(); } // Adapter function for use with AtExit(). This should be called single // threaded, so don't use atomic operations. // Calling OnExit while singleton is in use by other threads is a mistake. static void OnExit(void* /*unused*/) { // AtExit should only ever be register after the singleton instance was // created. We should only ever get here with a valid instance_ pointer. Traits::Delete(reinterpret_cast(subtle::NoBarrier_Load(&instance_))); instance_ = 0; } static subtle::AtomicWord instance_; }; template subtle::AtomicWord Singleton::instance_ = 0; } // namespace base #endif // BASE_MEMORY_SINGLETON_H_