// // Copyright (c) 2000-2010 // Joerg Walter, Mathias Koch, Gunter Winkler, David Bellot // Copyright (c) 2014, Athanasios Iliopoulos // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_MATRIX_ #define _BOOST_UBLAS_MATRIX_ #include #include #include #include #include #include #include // Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { /** \brief main namespace of uBLAS. * * Use this namespace for all operations with uBLAS. It can also be abbreviated with * \code namespace ublas = boost::numeric::ublas; \endcode * * A common practice is to bring this namespace into the current scope with * \code using namespace boost::numeric::ublas; \endcode. * * However, be warned that using the ublas namespace and the std::vector at the same time can lead to the compiler to confusion. * The solution is simply to prefix each ublas vector like \c boost::numeric::ublas::vector. If you think it's too long to * write, you can define a new namespace like \c namespace ublas = boost::numeric::ublas and then just declare your vectors * with \c ublas::vector. STL vectors will be declared as vector. No need to prefix with \c std:: */ namespace ublas { namespace detail { using namespace boost::numeric::ublas; // Matrix resizing algorithm template BOOST_UBLAS_INLINE void matrix_resize_preserve (M& m, M& temporary) { typedef L layout_type; typedef typename M::size_type size_type; const size_type msize1 (m.size1 ()); // original size const size_type msize2 (m.size2 ()); const size_type size1 (temporary.size1 ()); // new size is specified by temporary const size_type size2 (temporary.size2 ()); // Common elements to preserve const size_type size1_min = (std::min) (size1, msize1); const size_type size2_min = (std::min) (size2, msize2); // Order for major and minor sizes const size_type major_size = layout_type::size_M (size1_min, size2_min); const size_type minor_size = layout_type::size_m (size1_min, size2_min); // Indexing copy over major for (size_type major = 0; major != major_size; ++major) { for (size_type minor = 0; minor != minor_size; ++minor) { // find indexes - use invertability of element_ functions const size_type i1 = layout_type::index_M(major, minor); const size_type i2 = layout_type::index_m(major, minor); temporary.data () [layout_type::element (i1, size1, i2, size2)] = m.data() [layout_type::element (i1, msize1, i2, msize2)]; } } m.assign_temporary (temporary); } } /** \brief A dense matrix of values of type \c T. * * For a \f$(m \times n)\f$-dimensional matrix and \f$ 0 \leq i < m, 0 \leq j < n\f$, every element \f$ m_{i,j} \f$ is mapped to * the \f$(i.n + j)\f$-th element of the container for row major orientation or the \f$ (i + j.m) \f$-th element of * the container for column major orientation. In a dense matrix all elements are represented in memory in a * contiguous chunk of memory by definition. * * Orientation and storage can also be specified, otherwise a \c row_major and \c unbounded_array are used. It is \b not * required by the storage to initialize elements of the matrix. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major * \tparam A the type of Storage array. Default is \c unbounded_array */ template class matrix: public matrix_container > { typedef T *pointer; typedef L layout_type; typedef matrix self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef vector vector_temporary_type; typedef self_type matrix_temporary_type; typedef dense_tag storage_category; // This could be better for performance, // typedef typename unknown_orientation_tag orientation_category; // but others depend on the orientation information... typedef typename L::orientation_category orientation_category; // Construction and destruction /// Default dense matrix constructor. Make a dense matrix of size (0,0) BOOST_UBLAS_INLINE matrix (): matrix_container (), size1_ (0), size2_ (0), data_ () {} /** Dense matrix constructor with defined size * \param size1 number of rows * \param size2 number of columns */ BOOST_UBLAS_INLINE matrix (size_type size1, size_type size2): matrix_container (), size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2)) { } /** Dense matrix constructor with defined size a initial value for all the matrix elements * \param size1 number of rows * \param size2 number of columns * \param init initial value assigned to all elements */ matrix (size_type size1, size_type size2, const value_type &init): matrix_container (), size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2), init) { } /** Dense matrix constructor with defined size and an initial data array * \param size1 number of rows * \param size2 number of columns * \param data array to copy into the matrix. Must have the same dimension as the matrix */ BOOST_UBLAS_INLINE matrix (size_type size1, size_type size2, const array_type &data): matrix_container (), size1_ (size1), size2_ (size2), data_ (data) {} /** Copy-constructor of a dense matrix * \param m is a dense matrix */ BOOST_UBLAS_INLINE matrix (const matrix &m): matrix_container (), size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {} /** Copy-constructor of a dense matrix from a matrix expression * \param ae is a matrix expression */ template BOOST_UBLAS_INLINE matrix (const matrix_expression &ae): matrix_container (), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (layout_type::storage_size (size1_, size2_)) { matrix_assign (*this, ae); } // Accessors /** Return the number of rows of the matrix * You can also use the free size<>() function in operation/size.hpp as size<1>(m) where m is a matrix */ BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } /** Return the number of colums of the matrix * You can also use the free size<>() function in operation/size.hpp as size<2>(m) where m is a matrix */ BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } // Storage accessors /** Return a constant reference to the internal storage of a dense matrix, i.e. the raw data * It's type depends on the type used by the matrix to store its data */ BOOST_UBLAS_INLINE const array_type &data () const { return data_; } /** Return a reference to the internal storage of a dense matrix, i.e. the raw data * It's type depends on the type used by the matrix to store its data */ BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing /** Resize a matrix to new dimensions * If data are preserved, then if the size if bigger at least on one dimension, extra values are filled with zeros. * If data are not preserved, then nothing has to be assumed regarding the content of the matrix after resizing. * \param size1 the new number of rows * \param size2 the new number of colums * \param preserve a boolean to say if one wants the data to be preserved during the resizing. Default is true. */ BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { if (preserve) { self_type temporary (size1, size2); detail::matrix_resize_preserve (*this, temporary); } else { data ().resize (layout_type::storage_size (size1, size2)); size1_ = size1; size2_ = size2; } } // Element access /** Access a matrix element. Here we return a const reference * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \return a const reference to the element */ BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data () [layout_type::element (i, size1_, j, size2_)]; } /** Access a matrix element. Here we return a reference * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \return a reference to the element */ BOOST_UBLAS_INLINE reference at_element (size_type i, size_type j) { return data () [layout_type::element (i, size1_, j, size2_)]; } /** Access a matrix element. Here we return a reference * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \return a reference to the element */ BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return at_element (i, j); } /** Access a matrix element. Here we return a reference * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \return a reference to the element */ BOOST_UBLAS_INLINE reference operator () (size_type i) { return data()[i]; } BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data()[i]; } // /** Access a matrix element. Here we return a reference // * \param i the first coordinate of the element. By default it's the row // * \param j the second coordinate of the element. By default it's the column // * \return a reference to the element // */ // BOOST_UBLAS_INLINE // const_reference operator () const (size_type i) { // return data()[i]; // } // Element assignment /** Change the value of a matrix element. Return back a reference to it * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \param t the new value of the element * \return a reference to the newly changed element */ BOOST_UBLAS_INLINE reference insert_element (size_type i, size_type j, const_reference t) { return (at_element (i, j) = t); } /** Erase the element * For most types (int, double, etc...) it means setting 0 (zero) the element at zero in fact. * For user-defined types, it could be another value if you decided it. Your type in that case must * contain a default null value. * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column */ void erase_element (size_type i, size_type j) { at_element (i, j) = value_type/*zero*/(); } // Zeroing /** Erase all elements in the matrix * For most types (int, double, etc...) it means writing 0 (zero) everywhere. * For user-defined types, it could be another value if you decided it. Your type in that case must * contain a default null value. */ BOOST_UBLAS_INLINE void clear () { std::fill (data ().begin (), data ().end (), value_type/*zero*/()); } // Assignment #ifdef BOOST_UBLAS_MOVE_SEMANTICS /*! @note "pass by value" the key idea to enable move semantics */ BOOST_UBLAS_INLINE matrix &operator = (matrix m) { assign_temporary(m); return *this; } #else BOOST_UBLAS_INLINE matrix &operator = (const matrix &m) { size1_ = m.size1_; size2_ = m.size2_; data () = m.data (); return *this; } #endif template // Container assignment without temporary BOOST_UBLAS_INLINE matrix &operator = (const matrix_container &m) { resize (m ().size1 (), m ().size2 (), false); assign (m); return *this; } BOOST_UBLAS_INLINE matrix &assign_temporary (matrix &m) { swap (m); return *this; } template BOOST_UBLAS_INLINE matrix &operator = (const matrix_expression &ae) { self_type temporary (ae); return assign_temporary (temporary); } template BOOST_UBLAS_INLINE matrix &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix& operator += (const matrix_expression &ae) { self_type temporary (*this + ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE matrix &operator += (const matrix_container &m) { plus_assign (m); return *this; } template BOOST_UBLAS_INLINE matrix &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix& operator -= (const matrix_expression &ae) { self_type temporary (*this - ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE matrix &operator -= (const matrix_container &m) { minus_assign (m); return *this; } template BOOST_UBLAS_INLINE matrix &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix& operator *= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix& operator /= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (matrix &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); data ().swap (m.data ()); } } BOOST_UBLAS_INLINE friend void swap (matrix &m1, matrix &m2) { m1.swap (m2); } // Iterator types private: // Use the storage array iterator typedef typename A::const_iterator const_subiterator_type; typedef typename A::iterator subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1 iterator1; typedef indexed_iterator2 iterator2; typedef indexed_const_iterator1 const_iterator1; typedef indexed_const_iterator2 const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j); #else return const_iterator1 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_)); #endif } BOOST_UBLAS_INLINE iterator1 find1 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j); #else return iterator1 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_)); #endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j); #else return const_iterator2 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_)); #endif } BOOST_UBLAS_INLINE iterator2 find2 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, i, j); #else return iterator2 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_)); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public random_access_iterator_base { public: typedef typename matrix::value_type value_type; typedef typename matrix::difference_type difference_type; typedef typename matrix::const_reference reference; typedef const typename matrix::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { layout_type::increment_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { layout_type::decrement_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { layout_type::increment_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { layout_type::decrement_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_i (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; friend class iterator1; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1_, 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public random_access_iterator_base { public: typedef typename matrix::value_type value_type; typedef typename matrix::difference_type difference_type; typedef typename matrix::reference reference; typedef typename matrix::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, const subiterator_type &it): container_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { layout_type::increment_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { layout_type::decrement_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { layout_type::increment_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { layout_type::decrement_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_i (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public random_access_iterator_base { public: typedef typename matrix::value_type value_type; typedef typename matrix::difference_type difference_type; typedef typename matrix::const_reference reference; typedef const typename matrix::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { layout_type::increment_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { layout_type::decrement_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { layout_type::increment_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { layout_type::decrement_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_j (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { const self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { const self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; friend class iterator2; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public random_access_iterator_base { public: typedef typename matrix::value_type value_type; typedef typename matrix::difference_type difference_type; typedef typename matrix::reference reference; typedef typename matrix::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, const subiterator_type &it): container_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { layout_type::increment_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { layout_type::decrement_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { layout_type::increment_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { layout_type::decrement_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_j (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } // Serialization template void serialize(Archive & ar, const unsigned int /* file_version */){ // we need to copy to a collection_size_type to get a portable // and efficient serialization serialization::collection_size_type s1 (size1_); serialization::collection_size_type s2 (size2_); // serialize the sizes ar & serialization::make_nvp("size1",s1) & serialization::make_nvp("size2",s2); // copy the values back if loading if (Archive::is_loading::value) { size1_ = s1; size2_ = s2; } ar & serialization::make_nvp("data",data_); } private: size_type size1_; size_type size2_; array_type data_; }; #ifdef BOOST_UBLAS_CPP_GE_2011 /** \brief A fixed size dense matrix of values of type \c T. Equivalent to a c-style 2 dimensional array. * * For a \f$(m \times n)\f$-dimensional fixed_matrix and \f$ 0 \leq i < m, 0 \leq j < n\f$, every element \f$ m_{i,j} \f$ is mapped to * the \f$(i.n + j)\f$-th element of the container for row major orientation or the \f$ (i + j.m) \f$-th element of * the container for column major orientation. In a dense matrix all elements are represented in memory in a * contiguous chunk of memory by definition. * * Orientation and storage can also be specified, otherwise \c row_major and \c std::array are used. It is \b not * required by the storage container to initialize elements of the matrix. * * \tparam T the type of object stored in the matrix (like double, float, std::complex, etc...) * \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major * \tparam A the type of Storage array. Default is \c std::array */ template class fixed_matrix: public matrix_container > { typedef T *pointer; typedef L layout_type; typedef fixed_matrix self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef vector vector_temporary_type; typedef self_type matrix_temporary_type; typedef dense_tag storage_category; // This could be better for performance, // typedef typename unknown_orientation_tag orientation_category; // but others depend on the orientation information... typedef typename L::orientation_category orientation_category; // Construction and destruction /// Default dense fixed_matrix constructor. Make a dense fixed_matrix of size M x N BOOST_UBLAS_INLINE fixed_matrix (): matrix_container (), data_ () {} /** Dense fixed_matrix constructor with defined initial value for all the matrix elements * \param init initial value assigned to all elements */ fixed_matrix (const value_type &init): matrix_container (), data_ ( ) { data_.fill(init); } /** Dense matrix constructor with defined initial data array * \param data array to copy into the matrix. Must have the same dimension as the matrix */ BOOST_UBLAS_INLINE fixed_matrix (const array_type &data): matrix_container (), data_ (data) {} /** Copy-constructor of a dense fixed_matrix * \param m is a dense fixed_matrix */ BOOST_UBLAS_INLINE fixed_matrix (const fixed_matrix &m): matrix_container (), data_ (m.data_) {} /** Copy-constructor of a dense matrix from a matrix expression * \param ae is a matrix expression */ template BOOST_UBLAS_INLINE fixed_matrix (const matrix_expression &ae): matrix_container (), data_ () { matrix_assign (*this, ae); } /// \brief Construct a fixed_matrix from a list of values /// The list may be included in curly braces. Typical syntax is choices are : /// fixed_matrix v = { 1, 2, 3, 4 } or fixed_matrix v( {1, 2, 3, 4} ) or fixed_matrix v( 1, 2, 3, 4 ) template BOOST_UBLAS_INLINE fixed_matrix(value_type v0, Types... vrest) : matrix_container (), data_( array_type{ v0, vrest... } ) {} // Accessors /** Return the number of rows of the fixed_matrix * You can also use the free size<>() function in operation/size.hpp as size<1>(m) where m is a fixed_matrix */ BOOST_UBLAS_INLINE BOOST_CONSTEXPR size_type size1 () const { return M; } /** Return the number of colums of the fixed_matrix * You can also use the free size<>() function in operation/size.hpp as size<2>(m) where m is a fixed_matrix */ BOOST_UBLAS_INLINE BOOST_CONSTEXPR size_type size2 () const { return N; } // Storage accessors /** Return a constant reference to the internal storage of a dense matrix, i.e. the raw data * It's type depends on the type used by the matrix to store its data */ BOOST_UBLAS_INLINE const array_type &data () const { return data_; } /** Return a reference to the internal storage of a dense fixed_matrix, i.e. the raw data * It's type depends on the type used by the fixed_matrix to store its data */ BOOST_UBLAS_INLINE array_type &data () { return data_; } // Element access /** Access a fixed_matrix element. Here we return a const reference * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \return a const reference to the element */ BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data () [layout_type::element (i, M, j, N)]; // Fixme: add static lookup for element(...) i.e.: element(i,j) } /** Access a fixed_matrix element. Here we return a reference * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \return a reference to the element */ BOOST_UBLAS_INLINE reference at_element (size_type i, size_type j) { return data () [layout_type::element (i, M, j, N)]; } /** Access a fixed_matrix element. Here we return a reference * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \return a reference to the element */ BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return at_element (i, j); } // Element assignment /** Change the value of a fixed_matrix element. Return back a reference to it * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column * \param t the new value of the element * \return a reference to the newly changed element */ BOOST_UBLAS_INLINE reference insert_element (size_type i, size_type j, const_reference t) { return (at_element (i, j) = t); } /** Erase the element * For most types (int, double, etc...) it means setting 0 (zero) the element at zero in fact. * For user-defined types, it could be another value if you decided it. Your type in that case must * contain a default null value. * \param i the first coordinate of the element. By default it's the row * \param j the second coordinate of the element. By default it's the column */ void erase_element (size_type i, size_type j) { at_element (i, j) = value_type/*zero*/(); } // Zeroing /** Erase all elements in the fixed_matrix * For most types (int, double, etc...) it means writing 0 (zero) everywhere. * For user-defined types, it could be another value if you decided it. Your type in that case must * contain a default null value. */ BOOST_UBLAS_INLINE void clear () { std::fill (data ().begin (), data ().end (), value_type/*zero*/()); } // Assignment #ifdef BOOST_UBLAS_MOVE_SEMANTICS /*! @note "pass by value" the key idea to enable move semantics */ BOOST_UBLAS_INLINE fixed_matrix &operator = (fixed_matrix m) { assign_temporary(m); return *this; } #else BOOST_UBLAS_INLINE fixed_matrix &operator = (const fixed_matrix &m) { data () = m.data (); return *this; } #endif template // Container assignment without temporary BOOST_UBLAS_INLINE fixed_matrix &operator = (const matrix_container &m) { resize (m ().size1 (), m ().size2 (), false); assign (m); return *this; } BOOST_UBLAS_INLINE fixed_matrix &assign_temporary (fixed_matrix &m) { swap (m); return *this; } template BOOST_UBLAS_INLINE fixed_matrix &operator = (const matrix_expression &ae) { self_type temporary (ae); return assign_temporary (temporary); } template BOOST_UBLAS_INLINE fixed_matrix &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE fixed_matrix& operator += (const matrix_expression &ae) { self_type temporary (*this + ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE fixed_matrix &operator += (const matrix_container &m) { plus_assign (m); return *this; } template BOOST_UBLAS_INLINE fixed_matrix &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE fixed_matrix& operator -= (const matrix_expression &ae) { self_type temporary (*this - ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE fixed_matrix &operator -= (const matrix_container &m) { minus_assign (m); return *this; } template BOOST_UBLAS_INLINE fixed_matrix &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE fixed_matrix& operator *= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE fixed_matrix& operator /= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (fixed_matrix &m) { if (this != &m) { data ().swap (m.data ()); } } BOOST_UBLAS_INLINE friend void swap (fixed_matrix &m1, fixed_matrix &m2) { m1.swap (m2); } // Iterator types private: // Use the storage array iterator typedef typename A::const_iterator const_subiterator_type; typedef typename A::iterator subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1 iterator1; typedef indexed_iterator2 iterator2; typedef indexed_const_iterator1 const_iterator1; typedef indexed_const_iterator2 const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j); #else return const_iterator1 (*this, data ().begin () + layout_type::address (i, M, j, N)); #endif } BOOST_UBLAS_INLINE iterator1 find1 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j); #else return iterator1 (*this, data ().begin () + layout_type::address (i, M, j, N)); #endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j); #else return const_iterator2 (*this, data ().begin () + layout_type::address (i, M, j, N)); #endif } BOOST_UBLAS_INLINE iterator2 find2 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, i, j); #else return iterator2 (*this, data ().begin () + layout_type::address (i, M, j, N)); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public random_access_iterator_base { public: typedef typename fixed_matrix::value_type value_type; typedef typename fixed_matrix::difference_type difference_type; typedef typename fixed_matrix::const_reference reference; typedef const typename fixed_matrix::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { layout_type::increment_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { layout_type::decrement_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { layout_type::increment_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { layout_type::decrement_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_i (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; friend class iterator1; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, M, 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public random_access_iterator_base { public: typedef typename fixed_matrix::value_type value_type; typedef typename fixed_matrix::difference_type difference_type; typedef typename fixed_matrix::reference reference; typedef typename fixed_matrix::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, const subiterator_type &it): container_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { layout_type::increment_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { layout_type::decrement_i (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { layout_type::increment_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { layout_type::decrement_i (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_i (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin1 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, M, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public random_access_iterator_base { public: typedef typename fixed_matrix::value_type value_type; typedef typename fixed_matrix::difference_type difference_type; typedef typename fixed_matrix::const_reference reference; typedef const typename fixed_matrix::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { layout_type::increment_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { layout_type::decrement_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { layout_type::increment_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { layout_type::decrement_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_j (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { const self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { const self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; friend class iterator2; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, N); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public random_access_iterator_base { public: typedef typename fixed_matrix::value_type value_type; typedef typename fixed_matrix::difference_type difference_type; typedef typename fixed_matrix::reference reference; typedef typename fixed_matrix::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, const subiterator_type &it): container_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { layout_type::increment_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { layout_type::decrement_j (it_, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { layout_type::increment_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { layout_type::decrement_j (it_, n, (*this) ().size1 (), (*this) ().size2 ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return layout_type::distance_j (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ()); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { self_type &m = (*this) (); return layout_type::index_i (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } BOOST_UBLAS_INLINE size_type index2 () const { self_type &m = (*this) (); return layout_type::index_j (it_ - m.begin2 ().it_, m.size1 (), m.size2 ()); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, N); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } // Serialization template void serialize(Archive & ar, const unsigned int /* file_version */){ ar & serialization::make_nvp("data",data_); } private: array_type data_; }; #endif // BOOST_UBLAS_CPP_GE_2011 /** \brief A dense matrix of values of type \c T with a variable size bounded to a maximum of \f$M\f$ by \f$N\f$. * * For a \f$(m \times n)\f$-dimensional matrix and \f$ 0 \leq i < m, 0 \leq j < n\f$, every element \f$m_{i,j}\f$ is mapped * to the \f$(i.n + j)\f$-th element of the container for row major orientation or the \f$(i + j.m)\f$-th element * of the container for column major orientation. Finally in a dense matrix all elements are represented in memory * in a contiguous chunk of memory. * * Orientation can be specified. Default is \c row_major * The default constructor creates the matrix with size \f$M\f$ by \f$N\f$. Elements are constructed by the storage * type \c bounded_array, which need not initialise their value. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam M maximum and default number of rows (if not specified at construction) * \tparam N maximum and default number of columns (if not specified at construction) * \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major */ template class bounded_matrix: public matrix > { typedef matrix > matrix_type; public: typedef typename matrix_type::size_type size_type; static const size_type max_size1 = M; static const size_type max_size2 = N; // Construction and destruction BOOST_UBLAS_INLINE bounded_matrix (): matrix_type (M, N) {} BOOST_UBLAS_INLINE bounded_matrix (size_type size1, size_type size2): matrix_type (size1, size2) {} BOOST_UBLAS_INLINE bounded_matrix (const bounded_matrix &m): matrix_type (m) {} template // Allow matrix > construction BOOST_UBLAS_INLINE bounded_matrix (const matrix &m): matrix_type (m) {} template BOOST_UBLAS_INLINE bounded_matrix (const matrix_expression &ae): matrix_type (ae) {} BOOST_UBLAS_INLINE ~bounded_matrix () {} // Assignment #ifdef BOOST_UBLAS_MOVE_SEMANTICS /*! @note "pass by value" the key idea to enable move semantics */ BOOST_UBLAS_INLINE bounded_matrix &operator = (bounded_matrix m) { matrix_type::operator = (m); return *this; } #else BOOST_UBLAS_INLINE bounded_matrix &operator = (const bounded_matrix &m) { matrix_type::operator = (m); return *this; } #endif template // Generic matrix assignment BOOST_UBLAS_INLINE bounded_matrix &operator = (const matrix &m) { matrix_type::operator = (m); return *this; } template // Container assignment without temporary BOOST_UBLAS_INLINE bounded_matrix &operator = (const matrix_container &m) { matrix_type::operator = (m); return *this; } template BOOST_UBLAS_INLINE bounded_matrix &operator = (const matrix_expression &ae) { matrix_type::operator = (ae); return *this; } }; /** \brief A dense matrix of values of type \c T stored as a vector of vectors. * * Rows or columns are not stored into contiguous chunks of memory but data inside rows (or columns) are. * Orientation and storage can also be specified, otherwise a row major and unbounded arrays are used. * The data is stored as a vector of vectors, meaning that rows or columns might not be stored into contiguous chunks * of memory. Orientation and storage can also be specified, otherwise a row major and unbounded arrays are used. * The storage type defaults to \c unbounded_array> and orientation is \c row_major. It is \b not * required by the storage to initialize elements of the matrix. For a \f$(m \times n)\f$-dimensional matrix and * \f$ 0 \leq i < m, 0 \leq j < n\f$, every element \f$m_{i,j}\f$ is mapped to the \f$(i.n + j)\f$-th element of the * container for row major orientation or the \f$(i + j.m)\f$-th element of the container for column major orientation. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam L the storage organization. It can be either \c row_major or \c column_major. By default it is \c row_major * \tparam A the type of Storage array. By default, it is an \unbounded_array> */ template class vector_of_vector: public matrix_container > { typedef T *pointer; typedef L layout_type; typedef vector_of_vector self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef vector vector_temporary_type; typedef self_type matrix_temporary_type; typedef dense_tag storage_category; // This could be better for performance, // typedef typename unknown_orientation_tag orientation_category; // but others depend on the orientation information... typedef typename L::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE vector_of_vector (): matrix_container (), size1_ (0), size2_ (0), data_ (1) {} BOOST_UBLAS_INLINE vector_of_vector (size_type size1, size_type size2): matrix_container (), size1_ (size1), size2_ (size2), data_ (1) { resize (size1, size2, true); } BOOST_UBLAS_INLINE vector_of_vector (const vector_of_vector &m): matrix_container (), size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {} template BOOST_UBLAS_INLINE vector_of_vector (const matrix_expression &ae): matrix_container (), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (layout_type::size_M (size1_, size2_) + 1) { for (size_type k = 0; k < layout_type::size_M (size1_, size2_); ++ k) data ()[k].resize (layout_type::size_m (size1_, size2_)); matrix_assign (*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } // Storage accessors BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { size1_ = size1; size2_ = size2; if (preserve) data ().resize (layout_type::size_M (size1, size2) + 1, typename array_type::value_type ()); else data ().resize (layout_type::size_M (size1, size2) + 1); for (size_type k = 0; k < layout_type::size_M (size1, size2); ++ k) { if (preserve) data () [k].resize (layout_type::size_m (size1, size2), value_type ()); else data () [k].resize (layout_type::size_m (size1, size2)); } } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data () [layout_type::index_M (i, j)] [layout_type::index_m (i, j)]; } BOOST_UBLAS_INLINE reference at_element (size_type i, size_type j) { return data () [layout_type::index_M (i, j)] [layout_type::index_m (i, j)]; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return at_element (i, j); } // Element assignment BOOST_UBLAS_INLINE reference insert_element (size_type i, size_type j, const_reference t) { return (at_element (i, j) = t); } BOOST_UBLAS_INLINE void erase_element (size_type i, size_type j) { at_element (i, j) = value_type/*zero*/(); } // Zeroing BOOST_UBLAS_INLINE void clear () { for (size_type k = 0; k < layout_type::size_M (size1_, size2_); ++ k) std::fill (data () [k].begin (), data () [k].end (), value_type/*zero*/()); } // Assignment BOOST_UBLAS_INLINE vector_of_vector &operator = (const vector_of_vector &m) { size1_ = m.size1_; size2_ = m.size2_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE vector_of_vector &assign_temporary (vector_of_vector &m) { swap (m); return *this; } template BOOST_UBLAS_INLINE vector_of_vector &operator = (const matrix_expression &ae) { self_type temporary (ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE vector_of_vector &operator = (const matrix_container &m) { resize (m ().size1 (), m ().size2 (), false); assign (m); return *this; } template BOOST_UBLAS_INLINE vector_of_vector &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_of_vector& operator += (const matrix_expression &ae) { self_type temporary (*this + ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE vector_of_vector &operator += (const matrix_container &m) { plus_assign (m); return *this; } template BOOST_UBLAS_INLINE vector_of_vector &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_of_vector& operator -= (const matrix_expression &ae) { self_type temporary (*this - ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE vector_of_vector &operator -= (const matrix_container &m) { minus_assign (m); return *this; } template BOOST_UBLAS_INLINE vector_of_vector &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_of_vector& operator *= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE vector_of_vector& operator /= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (vector_of_vector &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); data ().swap (m.data ()); } } BOOST_UBLAS_INLINE friend void swap (vector_of_vector &m1, vector_of_vector &m2) { m1.swap (m2); } // Iterator types private: // Use the vector iterator typedef typename A::value_type::const_iterator const_subiterator_type; typedef typename A::value_type::iterator subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1 iterator1; typedef indexed_iterator2 iterator2; typedef indexed_const_iterator1 const_iterator1; typedef indexed_const_iterator2 const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /*rank*/, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j); #else return const_iterator1 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j)); #endif } BOOST_UBLAS_INLINE iterator1 find1 (int /*rank*/, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j); #else return iterator1 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j)); #endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int /*rank*/, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j); #else return const_iterator2 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j)); #endif } BOOST_UBLAS_INLINE iterator2 find2 (int /*rank*/, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, i, j); #else return iterator2 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j)); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public random_access_iterator_base { public: typedef typename vector_of_vector::value_type value_type; typedef typename vector_of_vector::difference_type difference_type; typedef typename vector_of_vector::const_reference reference; typedef const typename vector_of_vector::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), i_ (), j_ (), it_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, size_type i, size_type j, const const_subiterator_type &it): container_const_reference (m), i_ (i), j_ (j), it_ (it) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), i_ (it.i_), j_ (it.j_), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ i_; const self_type &m = (*this) (); if (layout_type::fast_i ()) ++ it_; else it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- i_; const self_type &m = (*this) (); if (layout_type::fast_i ()) -- it_; else it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { i_ += n; const self_type &m = (*this) (); it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { i_ -= n; const self_type &m = (*this) (); it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ()); return index1 () - it.index1 (); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return i_; } BOOST_UBLAS_INLINE size_type index2 () const { return j_; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ()); return it_ < it.it_; } private: size_type i_; size_type j_; const_subiterator_type it_; friend class iterator1; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1_, 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public random_access_iterator_base { public: typedef typename vector_of_vector::value_type value_type; typedef typename vector_of_vector::difference_type difference_type; typedef typename vector_of_vector::reference reference; typedef typename vector_of_vector::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), i_ (), j_ (), it_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, size_type i, size_type j, const subiterator_type &it): container_reference (m), i_ (i), j_ (j), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ i_; self_type &m = (*this) (); if (layout_type::fast_i ()) ++ it_; else it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- i_; self_type &m = (*this) (); if (layout_type::fast_i ()) -- it_; else it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { i_ += n; self_type &m = (*this) (); it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { i_ -= n; self_type &m = (*this) (); it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ()); return index1 () - it.index1 (); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return i_; } BOOST_UBLAS_INLINE size_type index2 () const { return j_; } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ()); return it_ < it.it_; } private: size_type i_; size_type j_; subiterator_type it_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public random_access_iterator_base { public: typedef typename vector_of_vector::value_type value_type; typedef typename vector_of_vector::difference_type difference_type; typedef typename vector_of_vector::const_reference reference; typedef const typename vector_of_vector::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), i_ (), j_ (), it_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, size_type i, size_type j, const const_subiterator_type &it): container_const_reference (m), i_ (i), j_ (j), it_ (it) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), i_ (it.i_), j_ (it.j_), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ j_; const self_type &m = (*this) (); if (layout_type::fast_j ()) ++ it_; else it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- j_; const self_type &m = (*this) (); if (layout_type::fast_j ()) -- it_; else it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { j_ += n; const self_type &m = (*this) (); it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { j_ -= n; const self_type &m = (*this) (); it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ()); return index2 () - it.index2 (); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { const self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { const self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return i_; } BOOST_UBLAS_INLINE size_type index2 () const { return j_; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ()); return it_ < it.it_; } private: size_type i_; size_type j_; const_subiterator_type it_; friend class iterator2; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public random_access_iterator_base { public: typedef typename vector_of_vector::value_type value_type; typedef typename vector_of_vector::difference_type difference_type; typedef typename vector_of_vector::reference reference; typedef typename vector_of_vector::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), i_ (), j_ (), it_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, size_type i, size_type j, const subiterator_type &it): container_reference (m), i_ (i), j_ (j), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ j_; self_type &m = (*this) (); if (layout_type::fast_j ()) ++ it_; else it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- j_; self_type &m = (*this) (); if (layout_type::fast_j ()) -- it_; else it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { j_ += n; self_type &m = (*this) (); it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { j_ -= n; self_type &m = (*this) (); it_ = m.find2 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ()); return index2 () - it.index2 (); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return i_; } BOOST_UBLAS_INLINE size_type index2 () const { return j_; } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ()); return it_ < it.it_; } private: size_type i_; size_type j_; subiterator_type it_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } // Serialization template void serialize(Archive & ar, const unsigned int /* file_version */){ // we need to copy to a collection_size_type to get a portable // and efficient serialization serialization::collection_size_type s1 (size1_); serialization::collection_size_type s2 (size2_); // serialize the sizes ar & serialization::make_nvp("size1",s1) & serialization::make_nvp("size2",s2); // copy the values back if loading if (Archive::is_loading::value) { size1_ = s1; size2_ = s2; } ar & serialization::make_nvp("data",data_); } private: size_type size1_; size_type size2_; array_type data_; }; /** \brief A matrix with all values of type \c T equal to zero * * Changing values does not affect the matrix, however assigning it to a normal matrix will put zero * everywhere in the target matrix. All accesses are constant time, due to the trivial value. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam ALLOC an allocator for storing the zero element. By default, a standar allocator is used. */ template class zero_matrix: public matrix_container > { typedef const T *const_pointer; typedef zero_matrix self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef typename boost::allocator_size_type::type size_type; typedef typename boost::allocator_difference_type::type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef sparse_tag storage_category; typedef unknown_orientation_tag orientation_category; // Construction and destruction BOOST_UBLAS_INLINE zero_matrix (): matrix_container (), size1_ (0), size2_ (0) {} BOOST_UBLAS_INLINE zero_matrix (size_type size): matrix_container (), size1_ (size), size2_ (size) {} BOOST_UBLAS_INLINE zero_matrix (size_type size1, size_type size2): matrix_container (), size1_ (size1), size2_ (size2) {} BOOST_UBLAS_INLINE zero_matrix (const zero_matrix &m): matrix_container (), size1_ (m.size1_), size2_ (m.size2_) {} // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size, bool /*preserve*/ = true) { size1_ = size; size2_ = size; } BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool /*preserve*/ = true) { size1_ = size1; size2_ = size2; } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type /* i */, size_type /* j */) const { return zero_; } // Assignment BOOST_UBLAS_INLINE zero_matrix &operator = (const zero_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; return *this; } BOOST_UBLAS_INLINE zero_matrix &assign_temporary (zero_matrix &m) { swap (m); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (zero_matrix &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); } } BOOST_UBLAS_INLINE friend void swap (zero_matrix &m1, zero_matrix &m2) { m1.swap (m2); } // Iterator types public: class const_iterator1; class const_iterator2; typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /*rank*/, size_type /*i*/, size_type /*j*/) const { return const_iterator1 (*this); } BOOST_UBLAS_INLINE const_iterator2 find2 (int /*rank*/, size_type /*i*/, size_type /*j*/) const { return const_iterator2 (*this); } class const_iterator1: public container_const_reference, public bidirectional_iterator_base { public: typedef typename zero_matrix::value_type value_type; typedef typename zero_matrix::difference_type difference_type; typedef typename zero_matrix::const_reference reference; typedef typename zero_matrix::const_pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m): container_const_reference (m) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return *this; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return zero_; // arbitary return value } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return const_iterator2 ((*this) ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return const_iterator2 ((*this) ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return 0; // arbitary return value } BOOST_UBLAS_INLINE size_type index2 () const { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return 0; // arbitary return value } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); detail::ignore_unused_variable_warning(it); return true; } }; typedef const_iterator1 iterator1; BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return const_iterator1 (*this); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return const_iterator1 (*this); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } class const_iterator2: public container_const_reference, public bidirectional_iterator_base { public: typedef typename zero_matrix::value_type value_type; typedef typename zero_matrix::difference_type difference_type; typedef typename zero_matrix::const_reference reference; typedef typename zero_matrix::const_pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m): container_const_reference (m) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return *this; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return zero_; // arbitary return value } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return const_iterator1 ((*this) ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return const_iterator1 ((*this) ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return 0; // arbitary return value } BOOST_UBLAS_INLINE size_type index2 () const { BOOST_UBLAS_CHECK_FALSE (bad_index ()); return 0; // arbitary return value } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); detail::ignore_unused_variable_warning(it); return true; } }; typedef const_iterator2 iterator2; BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } // Serialization template void serialize(Archive & ar, const unsigned int /* file_version */){ // we need to copy to a collection_size_type to get a portable // and efficient serialization serialization::collection_size_type s1 (size1_); serialization::collection_size_type s2 (size2_); // serialize the sizes ar & serialization::make_nvp("size1",s1) & serialization::make_nvp("size2",s2); // copy the values back if loading if (Archive::is_loading::value) { size1_ = s1; size2_ = s2; } } private: size_type size1_; size_type size2_; static const value_type zero_; }; template const typename zero_matrix::value_type zero_matrix::zero_ = T(/*zero*/); /** \brief An identity matrix with values of type \c T * * Elements or cordinates \f$(i,i)\f$ are equal to 1 (one) and all others to 0 (zero). * Changing values does not affect the matrix, however assigning it to a normal matrix will * make the matrix equal to an identity matrix. All accesses are constant du to the trivial values. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam ALLOC an allocator for storing the zeros and one elements. By default, a standar allocator is used. */ template class identity_matrix: public matrix_container > { typedef const T *const_pointer; typedef identity_matrix self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef typename boost::allocator_size_type::type size_type; typedef typename boost::allocator_difference_type::type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef sparse_tag storage_category; typedef unknown_orientation_tag orientation_category; // Construction and destruction BOOST_UBLAS_INLINE identity_matrix (): matrix_container (), size1_ (0), size2_ (0), size_common_ (0) {} BOOST_UBLAS_INLINE identity_matrix (size_type size): matrix_container (), size1_ (size), size2_ (size), size_common_ ((std::min) (size1_, size2_)) {} BOOST_UBLAS_INLINE identity_matrix (size_type size1, size_type size2): matrix_container (), size1_ (size1), size2_ (size2), size_common_ ((std::min) (size1_, size2_)) {} BOOST_UBLAS_INLINE identity_matrix (const identity_matrix &m): matrix_container (), size1_ (m.size1_), size2_ (m.size2_), size_common_ ((std::min) (size1_, size2_)) {} // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size, bool /*preserve*/ = true) { size1_ = size; size2_ = size; size_common_ = ((std::min)(size1_, size2_)); } BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool /*preserve*/ = true) { size1_ = size1; size2_ = size2; size_common_ = ((std::min)(size1_, size2_)); } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { if (i == j) return one_; else return zero_; } // Assignment BOOST_UBLAS_INLINE identity_matrix &operator = (const identity_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; size_common_ = m.size_common_; return *this; } BOOST_UBLAS_INLINE identity_matrix &assign_temporary (identity_matrix &m) { swap (m); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (identity_matrix &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); std::swap (size_common_, m.size_common_); } } BOOST_UBLAS_INLINE friend void swap (identity_matrix &m1, identity_matrix &m2) { m1.swap (m2); } // Iterator types private: // Use an index typedef size_type const_subiterator_type; public: class const_iterator1; class const_iterator2; typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) { i = (std::max) (i, j); i = (std::min) (i, j + 1); } return const_iterator1 (*this, i); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) { j = (std::max) (j, i); j = (std::min) (j, i + 1); } return const_iterator2 (*this, j); } class const_iterator1: public container_const_reference, public bidirectional_iterator_base { public: typedef typename identity_matrix::value_type value_type; typedef typename identity_matrix::difference_type difference_type; typedef typename identity_matrix::const_reference reference; typedef typename identity_matrix::const_pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { BOOST_UBLAS_CHECK (it_ < (*this) ().size1 (), bad_index ()); ++it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { BOOST_UBLAS_CHECK (it_ > 0, bad_index ()); --it_; return *this; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return one_; } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return const_iterator2 ((*this) (), it_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return const_iterator2 ((*this) (), it_ + 1); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it_; } BOOST_UBLAS_INLINE size_type index2 () const { return it_; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: const_subiterator_type it_; }; typedef const_iterator1 iterator1; BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return const_iterator1 (*this, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return const_iterator1 (*this, size_common_); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } class const_iterator2: public container_const_reference, public bidirectional_iterator_base { public: typedef typename identity_matrix::value_type value_type; typedef typename identity_matrix::difference_type difference_type; typedef typename identity_matrix::const_reference reference; typedef typename identity_matrix::const_pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { BOOST_UBLAS_CHECK (it_ < (*this) ().size_common_, bad_index ()); ++it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { BOOST_UBLAS_CHECK (it_ > 0, bad_index ()); --it_; return *this; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return one_; } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return const_iterator1 ((*this) (), it_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return const_iterator1 ((*this) (), it_ + 1); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it_; } BOOST_UBLAS_INLINE size_type index2 () const { return it_; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: const_subiterator_type it_; }; typedef const_iterator2 iterator2; BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return const_iterator2 (*this, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return const_iterator2 (*this, size_common_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } // Serialization template void serialize(Archive & ar, const unsigned int /* file_version */){ // we need to copy to a collection_size_type to get a portable // and efficient serialization serialization::collection_size_type s1 (size1_); serialization::collection_size_type s2 (size2_); // serialize the sizes ar & serialization::make_nvp("size1",s1) & serialization::make_nvp("size2",s2); // copy the values back if loading if (Archive::is_loading::value) { size1_ = s1; size2_ = s2; size_common_ = ((std::min)(size1_, size2_)); } } private: size_type size1_; size_type size2_; size_type size_common_; static const value_type zero_; static const value_type one_; }; template const typename identity_matrix::value_type identity_matrix::zero_ = T(/*zero*/); template const typename identity_matrix::value_type identity_matrix::one_ (1); // ISSUE: need 'one'-traits here /** \brief A matrix with all values of type \c T equal to the same value * * Changing one value has the effect of changing all the values. Assigning it to a normal matrix will copy * the same value everywhere in this matrix. All accesses are constant time, due to the trivial value. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam ALLOC an allocator for storing the unique value. By default, a standar allocator is used. */ template class scalar_matrix: public matrix_container > { typedef const T *const_pointer; typedef scalar_matrix self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef dense_tag storage_category; typedef unknown_orientation_tag orientation_category; // Construction and destruction BOOST_UBLAS_INLINE scalar_matrix (): matrix_container (), size1_ (0), size2_ (0), value_ () {} BOOST_UBLAS_INLINE scalar_matrix (size_type size1, size_type size2, const value_type &value = value_type(1)): matrix_container (), size1_ (size1), size2_ (size2), value_ (value) {} BOOST_UBLAS_INLINE scalar_matrix (const scalar_matrix &m): matrix_container (), size1_ (m.size1_), size2_ (m.size2_), value_ (m.value_) {} // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool /*preserve*/ = true) { size1_ = size1; size2_ = size2; } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type /*i*/, size_type /*j*/) const { return value_; } // Assignment BOOST_UBLAS_INLINE scalar_matrix &operator = (const scalar_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; value_ = m.value_; return *this; } BOOST_UBLAS_INLINE scalar_matrix &assign_temporary (scalar_matrix &m) { swap (m); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (scalar_matrix &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); std::swap (value_, m.value_); } } BOOST_UBLAS_INLINE friend void swap (scalar_matrix &m1, scalar_matrix &m2) { m1.swap (m2); } // Iterator types private: // Use an index typedef size_type const_subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_const_iterator1 iterator1; typedef indexed_const_iterator2 iterator2; typedef indexed_const_iterator1 const_iterator1; typedef indexed_const_iterator2 const_iterator2; #else class const_iterator1; class const_iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /*rank*/, size_type i, size_type j) const { return const_iterator1 (*this, i, j); } BOOST_UBLAS_INLINE const_iterator2 find2 (int /*rank*/, size_type i, size_type j) const { return const_iterator2 (*this, i, j); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public random_access_iterator_base { public: typedef typename scalar_matrix::value_type value_type; typedef typename scalar_matrix::difference_type difference_type; typedef typename scalar_matrix::const_reference reference; typedef typename scalar_matrix::const_pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const scalar_matrix &m, const const_subiterator_type &it1, const const_subiterator_type &it2): container_const_reference (m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return (*this) () (index1 (), index2 ()); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { const scalar_matrix &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { const scalar_matrix &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: const_subiterator_type it1_; const_subiterator_type it2_; }; typedef const_iterator1 iterator1; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1_, 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public random_access_iterator_base { public: typedef typename scalar_matrix::value_type value_type; typedef typename scalar_matrix::difference_type difference_type; typedef typename scalar_matrix::const_reference reference; typedef typename scalar_matrix::const_pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const scalar_matrix &m, const const_subiterator_type &it1, const const_subiterator_type &it2): container_const_reference (m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return (*this) () (index1 (), index2 ()); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { const scalar_matrix &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { const scalar_matrix &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: const_subiterator_type it1_; const_subiterator_type it2_; }; typedef const_iterator2 iterator2; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } // Serialization template void serialize(Archive & ar, const unsigned int /* file_version */){ // we need to copy to a collection_size_type to get a portable // and efficient serialization serialization::collection_size_type s1 (size1_); serialization::collection_size_type s2 (size2_); // serialize the sizes ar & serialization::make_nvp("size1",s1) & serialization::make_nvp("size2",s2); // copy the values back if loading if (Archive::is_loading::value) { size1_ = s1; size2_ = s2; } ar & serialization::make_nvp("value", value_); } private: size_type size1_; size_type size2_; value_type value_; }; /** \brief An array based matrix class which size is defined at type specification or object instanciation * * This matrix is directly based on a predefined C-style arry of data, thus providing the fastest * implementation possible. The constraint is that dimensions of the matrix must be specified at * the instanciation or the type specification. * * For instance, \code typedef c_matrix my_4by4_matrix \endcode * defines a 4 by 4 double-precision matrix. You can also instantiate it directly with * \code c_matrix my_fast_matrix \endcode. This will make a 8 by 5 integer matrix. The * price to pay for this speed is that you cannot resize it to a size larger than the one defined * in the template parameters. In the previous example, a size of 4 by 5 or 3 by 2 is acceptable, * but a new size of 9 by 5 or even 10 by 10 will raise a bad_size() exception. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam N the default maximum number of rows * \tparam M the default maximum number of columns */ template class c_matrix: public matrix_container > { typedef c_matrix self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef const T *const_pointer; typedef T *pointer; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef c_vector vector_temporary_type; // vector able to store all elements of c_matrix typedef self_type matrix_temporary_type; typedef dense_tag storage_category; // This could be better for performance, // typedef typename unknown_orientation_tag orientation_category; // but others depend on the orientation information... typedef row_major_tag orientation_category; // Construction and destruction BOOST_UBLAS_INLINE c_matrix (): size1_ (N), size2_ (M) /* , data_ () */ { } BOOST_UBLAS_INLINE c_matrix (size_type size1, size_type size2): size1_ (size1), size2_ (size2) /* , data_ () */ { if (size1_ > N || size2_ > M) bad_size ().raise (); } BOOST_UBLAS_INLINE c_matrix (const c_matrix &m): size1_ (m.size1_), size2_ (m.size2_) /* , data_ () */ { if (size1_ > N || size2_ > M) bad_size ().raise (); assign(m); } template BOOST_UBLAS_INLINE c_matrix (const matrix_expression &ae): size1_ (ae ().size1 ()), size2_ (ae ().size2 ()) /* , data_ () */ { if (size1_ > N || size2_ > M) bad_size ().raise (); matrix_assign (*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } BOOST_UBLAS_INLINE const_pointer data () const { return reinterpret_cast (data_); } BOOST_UBLAS_INLINE pointer data () { return reinterpret_cast (data_); } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { if (size1 > N || size2 > M) bad_size ().raise (); if (preserve) { self_type temporary (size1, size2); // Common elements to preserve const size_type size1_min = (std::min) (size1, size1_); const size_type size2_min = (std::min) (size2, size2_); for (size_type i = 0; i != size1_min; ++i) { // indexing copy over major for (size_type j = 0; j != size2_min; ++j) { temporary.data_[i][j] = data_[i][j]; } } assign_temporary (temporary); } else { size1_ = size1; size2_ = size2; } } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); return data_ [i] [j]; } BOOST_UBLAS_INLINE reference at_element (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); return data_ [i] [j]; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return at_element (i, j); } // Element assignment BOOST_UBLAS_INLINE reference insert_element (size_type i, size_type j, const_reference t) { return (at_element (i, j) = t); } // Zeroing BOOST_UBLAS_INLINE void clear () { for (size_type i = 0; i < size1_; ++ i) std::fill (data_ [i], data_ [i] + size2_, value_type/*zero*/()); } // Assignment #ifdef BOOST_UBLAS_MOVE_SEMANTICS /*! @note "pass by value" the key idea to enable move semantics */ BOOST_UBLAS_INLINE c_matrix &operator = (c_matrix m) { assign_temporary(m); return *this; } #else BOOST_UBLAS_INLINE c_matrix &operator = (const c_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; for (size_type i = 0; i < m.size1_; ++ i) std::copy (m.data_ [i], m.data_ [i] + m.size2_, data_ [i]); return *this; } #endif template // Container assignment without temporary BOOST_UBLAS_INLINE c_matrix &operator = (const matrix_container &m) { resize (m ().size1 (), m ().size2 (), false); assign (m); return *this; } BOOST_UBLAS_INLINE c_matrix &assign_temporary (c_matrix &m) { swap (m); return *this; } template BOOST_UBLAS_INLINE c_matrix &operator = (const matrix_expression &ae) { self_type temporary (ae); return assign_temporary (temporary); } template BOOST_UBLAS_INLINE c_matrix &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE c_matrix& operator += (const matrix_expression &ae) { self_type temporary (*this + ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE c_matrix &operator += (const matrix_container &m) { plus_assign (m); return *this; } template BOOST_UBLAS_INLINE c_matrix &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE c_matrix& operator -= (const matrix_expression &ae) { self_type temporary (*this - ae); return assign_temporary (temporary); } template // Container assignment without temporary BOOST_UBLAS_INLINE c_matrix &operator -= (const matrix_container &m) { minus_assign (m); return *this; } template BOOST_UBLAS_INLINE c_matrix &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE c_matrix& operator *= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE c_matrix& operator /= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (c_matrix &m) { if (this != &m) { BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ()); BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ()); std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); for (size_type i = 0; i < size1_; ++ i) std::swap_ranges (data_ [i], data_ [i] + size2_, m.data_ [i]); } } BOOST_UBLAS_INLINE friend void swap (c_matrix &m1, c_matrix &m2) { m1.swap (m2); } // Iterator types private: // Use pointers for iterator typedef const_pointer const_subiterator_type; typedef pointer subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1 iterator1; typedef indexed_iterator2 iterator2; typedef indexed_const_iterator1 const_iterator1; typedef indexed_const_iterator2 const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /*rank*/, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j); #else return const_iterator1 (*this, &data_ [i] [j]); #endif } BOOST_UBLAS_INLINE iterator1 find1 (int /*rank*/, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j); #else return iterator1 (*this, &data_ [i] [j]); #endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int /*rank*/, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j); #else return const_iterator2 (*this, &data_ [i] [j]); #endif } BOOST_UBLAS_INLINE iterator2 find2 (int /*rank*/, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, i, j); #else return iterator2 (*this, &data_ [i] [j]); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public random_access_iterator_base { public: typedef typename c_matrix::difference_type difference_type; typedef typename c_matrix::value_type value_type; typedef typename c_matrix::const_reference reference; typedef typename c_matrix::const_pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { it_ += M; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { it_ -= M; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it_ += n * M; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it_ -= n * M; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return (it_ - it.it_) / M; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { const self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return (it_ - m.begin1 ().it_) / M; } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return (it_ - m.begin1 ().it_) % M; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; friend class iterator1; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1_, 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public random_access_iterator_base { public: typedef typename c_matrix::difference_type difference_type; typedef typename c_matrix::value_type value_type; typedef typename c_matrix::reference reference; typedef typename c_matrix::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, const subiterator_type &it): container_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { it_ += M; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { it_ -= M; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it_ += n * M; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it_ -= n * M; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return (it_ - it.it_) / M; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { self_type &m = (*this) (); return m.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { self_type &m = (*this) (); return m.find2 (1, index1 (), m.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return (it_ - m.begin1 ().it_) / M; } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return (it_ - m.begin1 ().it_) % M; } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public random_access_iterator_base { public: typedef typename c_matrix::difference_type difference_type; typedef typename c_matrix::value_type value_type; typedef typename c_matrix::const_reference reference; typedef typename c_matrix::const_reference pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, const const_subiterator_type &it): container_const_reference (m), it_ (it) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { const self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { const self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return (it_ - m.begin2 ().it_) / M; } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return (it_ - m.begin2 ().it_) % M; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; friend class iterator2; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public random_access_iterator_base { public: typedef typename c_matrix::difference_type difference_type; typedef typename c_matrix::value_type value_type; typedef typename c_matrix::reference reference; typedef typename c_matrix::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, const subiterator_type &it): container_reference (m), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { const self_type &m = (*this) (); return (it_ - m.begin2 ().it_) / M; } BOOST_UBLAS_INLINE size_type index2 () const { const self_type &m = (*this) (); return (it_ - m.begin2 ().it_) % M; } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } // Serialization template void serialize(Archive & ar, const unsigned int /* file_version */){ // we need to copy to a collection_size_type to get a portable // and efficient serialization serialization::collection_size_type s1 (size1_); serialization::collection_size_type s2 (size2_); // serialize the sizes ar & serialization::make_nvp("size1",s1) & serialization::make_nvp("size2",s2); // copy the values back if loading if (Archive::is_loading::value) { size1_ = s1; size2_ = s2; } // could probably use make_array( &(data[0][0]), N*M ) ar & serialization::make_array(data_, N); } private: size_type size1_; size_type size2_; value_type data_ [N] [M]; }; }}} #endif