/////////////////////////////////////////////////////////////// // Copyright 2013 John Maddock. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt #ifndef BOOST_MP_CPP_BIN_FLOAT_IO_HPP #define BOOST_MP_CPP_BIN_FLOAT_IO_HPP namespace boost { namespace multiprecision { namespace cpp_bf_io_detail { // // Multiplies a by b and shifts the result so it fits inside max_bits bits, // returns by how much the result was shifted. // template inline I restricted_multiply(cpp_int& result, const cpp_int& a, const cpp_int& b, I max_bits, std::int64_t& error) { result = a * b; I gb = msb(result); I rshift = 0; if (gb > max_bits) { rshift = gb - max_bits; I lb = lsb(result); int roundup = 0; // The error rate increases by the error of both a and b, // this may be overly pessimistic in many case as we're assuming // that a and b have the same level of uncertainty... if (lb < rshift) error = error ? error * 2 : 1; if (rshift) { BOOST_ASSERT(rshift < INT_MAX); if (bit_test(result, static_cast(rshift - 1))) { if (lb == rshift - 1) roundup = 1; else roundup = 2; } result >>= rshift; } if ((roundup == 2) || ((roundup == 1) && (result.backend().limbs()[0] & 1))) ++result; } return rshift; } // // Computes a^e shifted to the right so it fits in max_bits, returns how far // to the right we are shifted. // template inline I restricted_pow(cpp_int& result, const cpp_int& a, I e, I max_bits, std::int64_t& error) { BOOST_ASSERT(&result != &a); I exp = 0; if (e == 1) { result = a; return exp; } else if (e == 2) { return restricted_multiply(result, a, a, max_bits, error); } else if (e == 3) { exp = restricted_multiply(result, a, a, max_bits, error); exp += restricted_multiply(result, result, a, max_bits, error); return exp; } I p = e / 2; exp = restricted_pow(result, a, p, max_bits, error); exp *= 2; exp += restricted_multiply(result, result, result, max_bits, error); if (e & 1) exp += restricted_multiply(result, result, a, max_bits, error); return exp; } inline int get_round_mode(const cpp_int& what, std::int64_t location, std::int64_t error) { // // Can we round what at /location/, if the error in what is /error/ in // units of 0.5ulp. Return: // // -1: Can't round. // 0: leave as is. // 1: tie. // 2: round up. // BOOST_ASSERT(location >= 0); BOOST_ASSERT(location < INT_MAX); std::int64_t error_radius = error & 1 ? (1 + error) / 2 : error / 2; if (error_radius && ((int)msb(error_radius) >= location)) return -1; if (bit_test(what, static_cast(location))) { if ((int)lsb(what) == location) return error ? -1 : 1; // Either a tie or can't round depending on whether we have any error if (!error) return 2; // no error, round up. cpp_int t = what - error_radius; if ((int)lsb(t) >= location) return -1; return 2; } else if (error) { cpp_int t = what + error_radius; return bit_test(t, static_cast(location)) ? -1 : 0; } return 0; } inline int get_round_mode(cpp_int& r, cpp_int& d, std::int64_t error, const cpp_int& q) { // // Lets suppose we have an inexact division by d+delta, where the true // value for the divisor is d, and with |delta| <= error/2, then // we have calculated q and r such that: // // n r // --- = q + ----------- // d + error d + error // // Rearranging for n / d we get: // // n delta*q + r // --- = q + ------------- // d d // // So rounding depends on whether 2r + error * q > d. // // We return: // 0 = down down. // 1 = tie. // 2 = round up. // -1 = couldn't decide. // r <<= 1; int c = r.compare(d); if (c == 0) return error ? -1 : 1; if (c > 0) { if (error) { r -= error * q; return r.compare(d) > 0 ? 2 : -1; } return 2; } if (error) { r += error * q; return r.compare(d) < 0 ? 0 : -1; } return 0; } } // namespace cpp_bf_io_detail namespace backends { template cpp_bin_float& cpp_bin_float::operator=(const char* s) { cpp_int n; std::intmax_t decimal_exp = 0; std::intmax_t digits_seen = 0; constexpr const std::intmax_t max_digits_seen = 4 + (cpp_bin_float::bit_count * 301L) / 1000; bool ss = false; // // Extract the sign: // if (*s == '-') { ss = true; ++s; } else if (*s == '+') ++s; // // Special cases first: // if ((std::strcmp(s, "nan") == 0) || (std::strcmp(s, "NaN") == 0) || (std::strcmp(s, "NAN") == 0)) { return *this = std::numeric_limits > >::quiet_NaN().backend(); } if ((std::strcmp(s, "inf") == 0) || (std::strcmp(s, "Inf") == 0) || (std::strcmp(s, "INF") == 0) || (std::strcmp(s, "infinity") == 0) || (std::strcmp(s, "Infinity") == 0) || (std::strcmp(s, "INFINITY") == 0)) { *this = std::numeric_limits > >::infinity().backend(); if (ss) negate(); return *this; } // // Digits before the point: // while (*s && (*s >= '0') && (*s <= '9')) { n *= 10u; n += *s - '0'; if (digits_seen || (*s != '0')) ++digits_seen; ++s; } // The decimal point (we really should localise this!!) if (*s && (*s == '.')) ++s; // // Digits after the point: // while (*s && (*s >= '0') && (*s <= '9')) { n *= 10u; n += *s - '0'; --decimal_exp; if (digits_seen || (*s != '0')) ++digits_seen; ++s; if (digits_seen > max_digits_seen) break; } // // Digits we're skipping: // while (*s && (*s >= '0') && (*s <= '9')) ++s; // // See if there's an exponent: // if (*s && ((*s == 'e') || (*s == 'E'))) { ++s; std::intmax_t e = 0; bool es = false; if (*s && (*s == '-')) { es = true; ++s; } else if (*s && (*s == '+')) ++s; while (*s && (*s >= '0') && (*s <= '9')) { e *= 10u; e += *s - '0'; ++s; } if (es) e = -e; decimal_exp += e; } if (*s) { // // Oops unexpected input at the end of the number: // BOOST_THROW_EXCEPTION(std::runtime_error("Unable to parse string as a valid floating point number.")); } if (n == 0) { // Result is necessarily zero: *this = static_cast(0u); return *this; } constexpr const unsigned limb_bits = sizeof(limb_type) * CHAR_BIT; // // Set our working precision - this is heuristic based, we want // a value as small as possible > cpp_bin_float::bit_count to avoid large computations // and excessive memory usage, but we also want to avoid having to // up the computation and start again at a higher precision. // So we round cpp_bin_float::bit_count up to the nearest whole number of limbs, and add // one limb for good measure. This works very well for small exponents, // but for larger exponents we may may need to restart, we could add some // extra precision right from the start for larger exponents, but this // seems to be slightly slower in the *average* case: // #ifdef BOOST_MP_STRESS_IO std::intmax_t max_bits = cpp_bin_float::bit_count + 32; #else std::intmax_t max_bits = cpp_bin_float::bit_count + ((cpp_bin_float::bit_count % limb_bits) ? (limb_bits - cpp_bin_float::bit_count % limb_bits) : 0) + limb_bits; #endif std::int64_t error = 0; std::intmax_t calc_exp = 0; std::intmax_t final_exponent = 0; if (decimal_exp >= 0) { // Nice and simple, the result is an integer... do { cpp_int t; if (decimal_exp) { calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(t, cpp_int(5), decimal_exp, max_bits, error); calc_exp += boost::multiprecision::cpp_bf_io_detail::restricted_multiply(t, t, n, max_bits, error); } else t = n; final_exponent = (std::int64_t)cpp_bin_float::bit_count - 1 + decimal_exp + calc_exp; int rshift = msb(t) - cpp_bin_float::bit_count + 1; if (rshift > 0) { final_exponent += rshift; int roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(t, rshift - 1, error); t >>= rshift; if ((roundup == 2) || ((roundup == 1) && t.backend().limbs()[0] & 1)) ++t; else if (roundup < 0) { #ifdef BOOST_MP_STRESS_IO max_bits += 32; #else max_bits *= 2; #endif error = 0; continue; } } else { BOOST_ASSERT(!error); } if (final_exponent > cpp_bin_float::max_exponent) { exponent() = cpp_bin_float::max_exponent; final_exponent -= cpp_bin_float::max_exponent; } else if (final_exponent < cpp_bin_float::min_exponent) { // Underflow: exponent() = cpp_bin_float::min_exponent; final_exponent -= cpp_bin_float::min_exponent; } else { exponent() = static_cast(final_exponent); final_exponent = 0; } copy_and_round(*this, t.backend()); break; } while (true); if (ss != sign()) negate(); } else { // Result is the ratio of two integers: we need to organise the // division so as to produce at least an N-bit result which we can // round according to the remainder. //cpp_int d = pow(cpp_int(5), -decimal_exp); do { cpp_int d; calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(d, cpp_int(5), -decimal_exp, max_bits, error); int shift = (int)cpp_bin_float::bit_count - msb(n) + msb(d); final_exponent = cpp_bin_float::bit_count - 1 + decimal_exp - calc_exp; if (shift > 0) { n <<= shift; final_exponent -= static_cast(shift); } cpp_int q, r; divide_qr(n, d, q, r); int gb = msb(q); BOOST_ASSERT((gb >= static_cast(cpp_bin_float::bit_count) - 1)); // // Check for rounding conditions we have to // handle ourselves: // int roundup = 0; if (gb == cpp_bin_float::bit_count - 1) { // Exactly the right number of bits, use the remainder to round: roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(r, d, error, q); } else if (bit_test(q, gb - (int)cpp_bin_float::bit_count) && ((int)lsb(q) == (gb - (int)cpp_bin_float::bit_count))) { // Too many bits in q and the bits in q indicate a tie, but we can break that using r, // note that the radius of error in r is error/2 * q: int lshift = gb - (int)cpp_bin_float::bit_count + 1; q >>= lshift; final_exponent += static_cast(lshift); BOOST_ASSERT((msb(q) >= cpp_bin_float::bit_count - 1)); if (error && (r < (error / 2) * q)) roundup = -1; else if (error && (r + (error / 2) * q >= d)) roundup = -1; else roundup = r ? 2 : 1; } else if (error && (((error / 2) * q + r >= d) || (r < (error / 2) * q))) { // We might have been rounding up, or got the wrong quotient: can't tell! roundup = -1; } if (roundup < 0) { #ifdef BOOST_MP_STRESS_IO max_bits += 32; #else max_bits *= 2; #endif error = 0; if (shift > 0) { n >>= shift; final_exponent += static_cast(shift); } continue; } else if ((roundup == 2) || ((roundup == 1) && q.backend().limbs()[0] & 1)) ++q; if (final_exponent > cpp_bin_float::max_exponent) { // Overflow: exponent() = cpp_bin_float::max_exponent; final_exponent -= cpp_bin_float::max_exponent; } else if (final_exponent < cpp_bin_float::min_exponent) { // Underflow: exponent() = cpp_bin_float::min_exponent; final_exponent -= cpp_bin_float::min_exponent; } else { exponent() = static_cast(final_exponent); final_exponent = 0; } copy_and_round(*this, q.backend()); if (ss != sign()) negate(); break; } while (true); } // // Check for scaling and/or over/under-flow: // final_exponent += exponent(); if (final_exponent > cpp_bin_float::max_exponent) { // Overflow: exponent() = cpp_bin_float::exponent_infinity; bits() = limb_type(0); } else if (final_exponent < cpp_bin_float::min_exponent) { // Underflow: exponent() = cpp_bin_float::exponent_zero; bits() = limb_type(0); sign() = 0; } else { exponent() = static_cast(final_exponent); } return *this; } template std::string cpp_bin_float::str(std::streamsize dig, std::ios_base::fmtflags f) const { if (dig == 0) dig = std::numeric_limits > >::max_digits10; bool scientific = (f & std::ios_base::scientific) == std::ios_base::scientific; bool fixed = !scientific && (f & std::ios_base::fixed); std::string s; if (exponent() <= cpp_bin_float::max_exponent) { // How far to left-shift in order to demormalise the mantissa: std::intmax_t shift = (std::intmax_t)cpp_bin_float::bit_count - (std::intmax_t)exponent() - 1; std::intmax_t digits_wanted = static_cast(dig); std::intmax_t base10_exp = exponent() >= 0 ? static_cast(std::floor(0.30103 * exponent())) : static_cast(std::ceil(0.30103 * exponent())); // // For fixed formatting we want /dig/ digits after the decimal point, // so if the exponent is zero, allowing for the one digit before the // decimal point, we want 1 + dig digits etc. // if (fixed) digits_wanted += 1 + base10_exp; if (scientific) digits_wanted += 1; if (digits_wanted < -1) { // Fixed precision, no significant digits, and nothing to round! s = "0"; if (sign()) s.insert(static_cast(0), 1, '-'); boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, true); return s; } // // power10 is the base10 exponent we need to multiply/divide by in order // to convert our denormalised number to an integer with the right number of digits: // std::intmax_t power10 = digits_wanted - base10_exp - 1; // // If we calculate 5^power10 rather than 10^power10 we need to move // 2^power10 into /shift/ // shift -= power10; cpp_int i; int roundup = 0; // 0=no rounding, 1=tie, 2=up constexpr const unsigned limb_bits = sizeof(limb_type) * CHAR_BIT; // // Set our working precision - this is heuristic based, we want // a value as small as possible > cpp_bin_float::bit_count to avoid large computations // and excessive memory usage, but we also want to avoid having to // up the computation and start again at a higher precision. // So we round cpp_bin_float::bit_count up to the nearest whole number of limbs, and add // one limb for good measure. This works very well for small exponents, // but for larger exponents we add a few extra limbs to max_bits: // #ifdef BOOST_MP_STRESS_IO std::intmax_t max_bits = cpp_bin_float::bit_count + 32; #else std::intmax_t max_bits = cpp_bin_float::bit_count + ((cpp_bin_float::bit_count % limb_bits) ? (limb_bits - cpp_bin_float::bit_count % limb_bits) : 0) + limb_bits; if (power10) max_bits += (msb(boost::multiprecision::detail::abs(power10)) / 8) * limb_bits; #endif do { std::int64_t error = 0; std::intmax_t calc_exp = 0; // // Our integer result is: bits() * 2^-shift * 5^power10 // i = bits(); if (shift < 0) { if (power10 >= 0) { // We go straight to the answer with all integer arithmetic, // the result is always exact and never needs rounding: BOOST_ASSERT(power10 <= (std::intmax_t)INT_MAX); i <<= -shift; if (power10) i *= pow(cpp_int(5), static_cast(power10)); } else if (power10 < 0) { cpp_int d; calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(d, cpp_int(5), -power10, max_bits, error); shift += calc_exp; BOOST_ASSERT(shift < 0); // Must still be true! i <<= -shift; cpp_int r; divide_qr(i, d, i, r); roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(r, d, error, i); if (roundup < 0) { #ifdef BOOST_MP_STRESS_IO max_bits += 32; #else max_bits *= 2; #endif shift = (std::intmax_t)cpp_bin_float::bit_count - exponent() - 1 - power10; continue; } } } else { // // Our integer is bits() * 2^-shift * 10^power10 // if (power10 > 0) { if (power10) { cpp_int t; calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(t, cpp_int(5), power10, max_bits, error); calc_exp += boost::multiprecision::cpp_bf_io_detail::restricted_multiply(i, i, t, max_bits, error); shift -= calc_exp; } if ((shift < 0) || ((shift == 0) && error)) { // We only get here if we were asked for a crazy number of decimal digits - // more than are present in a 2^max_bits number. #ifdef BOOST_MP_STRESS_IO max_bits += 32; #else max_bits *= 2; #endif shift = (std::intmax_t)cpp_bin_float::bit_count - exponent() - 1 - power10; continue; } if (shift) { roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(i, shift - 1, error); if (roundup < 0) { #ifdef BOOST_MP_STRESS_IO max_bits += 32; #else max_bits *= 2; #endif shift = (std::intmax_t)cpp_bin_float::bit_count - exponent() - 1 - power10; continue; } i >>= shift; } } else { // We're right shifting, *and* dividing by 5^-power10, // so 5^-power10 can never be that large or we'd simply // get zero as a result, and that case is already handled above: cpp_int r; BOOST_ASSERT(-power10 < INT_MAX); cpp_int d = pow(cpp_int(5), static_cast(-power10)); d <<= shift; divide_qr(i, d, i, r); r <<= 1; int c = r.compare(d); roundup = c < 0 ? 0 : c == 0 ? 1 : 2; } } s = i.str(0, std::ios_base::fmtflags(0)); // // Check if we got the right number of digits, this // is really a test of whether we calculated the // decimal exponent correctly: // std::intmax_t digits_got = i ? static_cast(s.size()) : 0; if (digits_got != digits_wanted) { base10_exp += digits_got - digits_wanted; if (fixed) digits_wanted = digits_got; // strange but true. power10 = digits_wanted - base10_exp - 1; shift = (std::intmax_t)cpp_bin_float::bit_count - exponent() - 1 - power10; if (fixed) break; roundup = 0; } else break; } while (true); // // Check whether we need to round up: note that we could equally round up // the integer /i/ above, but since we need to perform the rounding *after* // the conversion to a string and the digit count check, we might as well // do it here: // if ((roundup == 2) || ((roundup == 1) && ((s[s.size() - 1] - '0') & 1))) { boost::multiprecision::detail::round_string_up_at(s, static_cast(s.size() - 1), base10_exp); } if (sign()) s.insert(static_cast(0), 1, '-'); boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, false); } else { switch (exponent()) { case exponent_zero: s = sign() ? "-0" : f & std::ios_base::showpos ? "+0" : "0"; boost::multiprecision::detail::format_float_string(s, 0, dig, f, true); break; case exponent_nan: s = "nan"; break; case exponent_infinity: s = sign() ? "-inf" : f & std::ios_base::showpos ? "+inf" : "inf"; break; } } return s; } } // namespace backends }} // namespace boost::multiprecision #endif