/////////////////////////////////////////////////////////////////////////////// // Copyright 2014 Anton Bikineev // Copyright 2014 Christopher Kormanyos // Copyright 2014 John Maddock // Copyright 2014 Paul Bristow // Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_HYPERGEOMETRIC_1F1_HPP #define BOOST_MATH_HYPERGEOMETRIC_1F1_HPP #include #if defined(BOOST_NO_CXX11_AUTO_DECLARATIONS) || defined(BOOST_NO_CXX11_LAMBDAS) || defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX) # error "hypergeometric_1F1 requires a C++11 compiler" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace math { namespace detail { // check when 1F1 series can't decay to polynom template inline bool check_hypergeometric_1F1_parameters(const T& a, const T& b) { BOOST_MATH_STD_USING if ((b <= 0) && (b == floor(b))) { if ((a >= 0) || (a < b) || (a != floor(a))) return false; } return true; } template T hypergeometric_1F1_divergent_fallback(const T& a, const T& b, const T& z, const Policy& pol, long long& log_scaling) { BOOST_MATH_STD_USING const char* function = "hypergeometric_1F1_divergent_fallback<%1%>(%1%,%1%,%1%)"; // // We get here if either: // 1) We decide up front that Tricomi's method won't work, or: // 2) We've called Tricomi's method and it's failed. // if (b > 0) { // Commented out since recurrence seems to always be better? #if 0 if ((z < b) && (a > -50)) // Might as well use a recurrence in preference to z-recurrence: return hypergeometric_1F1_backward_recurrence_for_negative_a(a, b, z, pol, function, log_scaling); T z_limit = fabs((2 * a - b) / (sqrt(fabs(a)))); int k = 1 + itrunc(z - z_limit); // If k is too large we destroy all the digits in the result: T convergence_at_50 = (b - a + 50) * k / (z * 50); if ((k > 0) && (k < 50) && (fabs(convergence_at_50) < 1) && (z > z_limit)) { return boost::math::detail::hypergeometric_1f1_recurrence_on_z_minus_zero(a, b, T(z - k), k, pol, log_scaling); } #endif if (z < b) return hypergeometric_1F1_backward_recurrence_for_negative_a(a, b, z, pol, function, log_scaling); else return hypergeometric_1F1_backwards_recursion_on_b_for_negative_a(a, b, z, pol, function, log_scaling); } else // b < 0 { if (a < 0) { if ((b < a) && (z < -b / 4)) return hypergeometric_1F1_from_function_ratio_negative_ab(a, b, z, pol, log_scaling); else { // // Solve (a+n)z/((b+n)n) == 1 for n, the number of iterations till the series starts to converge. // If this is well away from the origin then it's probably better to use the series to evaluate this. // Note that if sqr is negative then we have no solution, so assign an arbitrarily large value to the // number of iterations. // bool can_use_recursion = (z - b + 100 < boost::math::policies::get_max_series_iterations()) && (100 - a < boost::math::policies::get_max_series_iterations()); T sqr = 4 * a * z + b * b - 2 * b * z + z * z; T iterations_to_convergence = sqr > 0 ? T(0.5f * (-sqrt(sqr) - b + z)) : T(-a - b); if(can_use_recursion && ((std::max)(a, b) + iterations_to_convergence > -300)) return hypergeometric_1F1_backwards_recursion_on_b_for_negative_a(a, b, z, pol, function, log_scaling); // // When a < b and if we fall through to the series, then we get divergent behaviour when b crosses the origin // so ideally we would pick another method. Otherwise the terms immediately after b crosses the origin may // suffer catastrophic cancellation.... // if((a < b) && can_use_recursion) return hypergeometric_1F1_backwards_recursion_on_b_for_negative_a(a, b, z, pol, function, log_scaling); } } else { // // Start by getting the domain of the recurrence relations, we get either: // -1 Backwards recursion is stable and the CF will converge to double precision. // +1 Forwards recursion is stable and the CF will converge to double precision. // 0 No man's land, we're not far enough away from the crossover point to get double precision from either CF. // // At higher than double precision we need to be further away from the crossover location to // get full converge, but it's not clear how much further - indeed at quad precision it's // basically impossible to ever get forwards iteration to work. Backwards seems to work // OK as long as a > 1 whatever the precision tbough. // int domain = hypergeometric_1F1_negative_b_recurrence_region(a, b, z); if ((domain < 0) && ((a > 1) || (boost::math::policies::digits() <= 64))) return hypergeometric_1F1_from_function_ratio_negative_b(a, b, z, pol, log_scaling); else if (domain > 0) { if (boost::math::policies::digits() <= 64) return hypergeometric_1F1_from_function_ratio_negative_b_forwards(a, b, z, pol, log_scaling); try { return hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling); } catch (const evaluation_error&) { // // The series failed, try the recursions instead and hope we get at least double precision: // return hypergeometric_1F1_from_function_ratio_negative_b_forwards(a, b, z, pol, log_scaling); } } // // We could fall back to Tricomi's approximation if we're in the transition zone // between the above two regions. However, I've been unable to find any examples // where this is better than the series, and there are many cases where it leads to // quite grievous errors. /* else if (allow_tricomi) { T aa = a < 1 ? T(1) : a; if (z < fabs((2 * aa - b) / (sqrt(fabs(aa * b))))) return hypergeometric_1F1_AS_13_3_7_tricomi(a, b, z, pol, log_scaling); } */ } } // If we get here, then we've run out of methods to try, use the checked series which will // raise an error if the result is garbage: return hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling); } template bool is_convergent_negative_z_series(const T& a, const T& b, const T& z, const T& b_minus_a) { BOOST_MATH_STD_USING // // Filter out some cases we don't want first: // if((b_minus_a > 0) && (b > 0)) { if (a < 0) return false; } // // Generic check: we have small initial divergence and are convergent after 10 terms: // if ((fabs(z * a / b) < 2) && (fabs(z * (a + 10) / ((b + 10) * 10)) < 1)) { // Double check for divergence when we cross the origin on a and b: if (a < 0) { T n = 300 - floor(a); if (fabs((a + n) * z / ((b + n) * n)) < 1) { if (b < 0) { T m = 3 - floor(b); if (fabs((a + m) * z / ((b + m) * m)) < 1) return true; } else return true; } } else if (b < 0) { T n = 3 - floor(b); if (fabs((a + n) * z / ((b + n) * n)) < 1) return true; } } if ((b > 0) && (a < 0)) { // // For a and z both negative, we're OK with some initial divergence as long as // it occurs before we hit the origin, as to start with all the terms have the // same sign. // // https://www.wolframalpha.com/input/?i=solve+(a%2Bn)z+%2F+((b%2Bn)n)+%3D%3D+1+for+n // T sqr = 4 * a * z + b * b - 2 * b * z + z * z; T iterations_to_convergence = sqr > 0 ? T(0.5f * (-sqrt(sqr) - b + z)) : T(-a + b); if (iterations_to_convergence < 0) iterations_to_convergence = 0.5f * (sqrt(sqr) - b + z); if (a + iterations_to_convergence < -50) { // Need to check for divergence when we cross the origin on a: if (a > -1) return true; T n = 300 - floor(a); if(fabs((a + n) * z / ((b + n) * n)) < 1) return true; } } return false; } template inline T cyl_bessel_i_shrinkage_rate(const T& z) { // Approximately the ratio I_10.5(z/2) / I_9.5(z/2), this gives us an idea of how quickly // the Bessel terms in A&S 13.6.4 are converging: if (z < -160) return 1; if (z < -40) return 0.75f; if (z < -20) return 0.5f; if (z < -7) return 0.25f; if (z < -2) return 0.1f; return 0.05f; } template inline bool hypergeometric_1F1_is_13_3_6_region(const T& a, const T& b, const T& z) { BOOST_MATH_STD_USING if(fabs(a) == 0.5) return false; if ((z < 0) && (fabs(10 * a / b) < 1) && (fabs(a) < 50)) { T shrinkage = cyl_bessel_i_shrinkage_rate(z); // We want the first term not too divergent, and convergence by term 10: if ((fabs((2 * a - 1) * (2 * a - b) / b) < 2) && (fabs(shrinkage * (2 * a + 9) * (2 * a - b + 10) / (10 * (b + 10))) < 0.75)) return true; } return false; } template inline bool hypergeometric_1F1_need_kummer_reflection(const T& a, const T& b, const T& z) { BOOST_MATH_STD_USING // // Check to see if we should apply Kummer's relation or not: // if (z > 0) return false; if (z < -1) return true; // // When z is small and negative, things get more complex. // More often than not we do not need apply Kummer's relation and the // series is convergent as is, but we do need to check: // if (a > 0) { if (b > 0) { return fabs((a + 10) * z / (10 * (b + 10))) < 1; // Is the 10'th term convergent? } else { return true; // Likely to be divergent as b crosses the origin } } else // a < 0 { if (b > 0) { return false; // Terms start off all positive and then by the time a crosses the origin we *must* be convergent. } else { return true; // Likely to be divergent as b crosses the origin, but hard to rationalise about! } } } template T hypergeometric_1F1_imp(const T& a, const T& b, const T& z, const Policy& pol, long long& log_scaling) { BOOST_MATH_STD_USING // exp, fabs, sqrt static const char* const function = "boost::math::hypergeometric_1F1<%1%,%1%,%1%>(%1%,%1%,%1%)"; if ((z == 0) || (a == 0)) return T(1); // undefined result: if (!detail::check_hypergeometric_1F1_parameters(a, b)) return policies::raise_domain_error( function, "Function is indeterminate for negative integer b = %1%.", b, pol); // other checks: if (a == -1) return 1 - (z / b); const T b_minus_a = b - a; // 0f0 a == b case; if (b_minus_a == 0) { long long scale = lltrunc(z, pol); log_scaling += scale; return exp(z - scale); } // Special case for b-a = -1, we don't use for small a as it throws the digits of a away and leads to large errors: if ((b_minus_a == -1) && (fabs(a) > 0.5)) { // for negative small integer a it is reasonable to use truncated series - polynomial if ((a < 0) && (a == ceil(a)) && (a > -50)) return detail::hypergeometric_1F1_generic_series(a, b, z, pol, log_scaling, function); return (b + z) * exp(z) / b; } if ((a == 1) && (b == 2)) return boost::math::expm1(z, pol) / z; if ((b - a == b) && (fabs(z / b) < policies::get_epsilon())) return 1; // // Special case for A&S 13.3.6: // if (z < 0) { if (hypergeometric_1F1_is_13_3_6_region(a, b, z)) { // a is tiny compared to b, and z < 0 // 13.3.6 appears to be the most efficient and often the most accurate method. T r = boost::math::detail::hypergeometric_1F1_AS_13_3_6(b_minus_a, b, T(-z), a, pol, log_scaling); long long scale = lltrunc(z, pol); log_scaling += scale; return r * exp(z - scale); } if ((b < 0) && (fabs(a) < 1e-2)) { // // This is a tricky area, potentially we have no good method at all: // if (b - ceil(b) == a) { // Fractional parts of a and b are genuinely equal, we might as well // apply Kummer's relation and get a truncated series: long long scaling = lltrunc(z); T r = exp(z - scaling) * detail::hypergeometric_1F1_imp(b_minus_a, b, -z, pol, log_scaling); log_scaling += scaling; return r; } if ((b < -1) && (max_b_for_1F1_small_a_negative_b_by_ratio(z) < b)) return hypergeometric_1F1_small_a_negative_b_by_ratio(a, b, z, pol, log_scaling); if ((b > -1) && (b < -0.5f)) { // Recursion is meta-stable: T first = hypergeometric_1F1_imp(a, T(b + 2), z, pol); T second = hypergeometric_1F1_imp(a, T(b + 1), z, pol); return tools::apply_recurrence_relation_backward(hypergeometric_1F1_recurrence_small_b_coefficients(a, b, z, 1), 1, first, second); } // // We've got nothing left but 13.3.6, even though it may be initially divergent: // T r = boost::math::detail::hypergeometric_1F1_AS_13_3_6(b_minus_a, b, T(-z), a, pol, log_scaling); long long scale = lltrunc(z, pol); log_scaling += scale; return r * exp(z - scale); } } // // Asymptotic expansion for large z // TODO: check region for higher precision types. // Use recurrence relations to move to this region when a and b are also large. // if (detail::hypergeometric_1F1_asym_region(a, b, z, pol)) { long long saved_scale = log_scaling; try { return hypergeometric_1F1_asym_large_z_series(a, b, z, pol, log_scaling); } catch (const evaluation_error&) { } // // Very occasionally our convergence criteria don't quite go to full precision // and we have to try another method: // log_scaling = saved_scale; } if ((fabs(a * z / b) < 3.5) && (fabs(z * 100) < fabs(b)) && ((fabs(a) > 1e-2) || (b < -5))) return detail::hypergeometric_1F1_rational(a, b, z, pol); if (hypergeometric_1F1_need_kummer_reflection(a, b, z)) { if (a == 1) return detail::hypergeometric_1F1_pade(b, z, pol); if (is_convergent_negative_z_series(a, b, z, b_minus_a)) { if ((boost::math::sign(b_minus_a) == boost::math::sign(b)) && ((b > 0) || (b < -200))) { // Series is close enough to convergent that we should be OK, // In this domain b - a ~ b and since 1F1[a, a, z] = e^z 1F1[b-a, b, -z] // and 1F1[a, a, -z] = e^-z the result must necessarily be somewhere near unity. // We have to rule out b small and negative because if b crosses the origin early // in the series (before we're pretty much converged) then all bets are off. // Note that this can go badly wrong when b and z are both large and negative, // in that situation the series goes in waves of large and small values which // may or may not cancel out. Likewise the initial part of the series may or may // not converge, and even if it does may or may not give a correct answer! // For example 1F1[-small, -1252.5, -1043.7] can loose up to ~800 digits due to // cancellation and is basically incalculable via this method. return hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling); } } // Let's otherwise make z positive (almost always) // by Kummer's transformation // (we also don't transform if z belongs to [-1,0]) long long scaling = lltrunc(z); T r = exp(z - scaling) * detail::hypergeometric_1F1_imp(b_minus_a, b, -z, pol, log_scaling); log_scaling += scaling; return r; } // // Check for initial divergence: // bool series_is_divergent = (a + 1) * z / (b + 1) < -1; if (series_is_divergent && (a < 0) && (b < 0) && (a > -1)) series_is_divergent = false; // Best off taking the series in this situation // // If series starts off non-divergent, and becomes divergent later // then it's because both a and b are negative, so check for later // divergence as well: // if (!series_is_divergent && (a < 0) && (b < 0) && (b > a)) { // // We need to exclude situations where we're over the initial "hump" // in the series terms (ie series has already converged by the time // b crosses the origin: // //T fa = fabs(a); //T fb = fabs(b); T convergence_point = sqrt((a - 1) * (a - b)) - a; if (-b < convergence_point) { T n = -floor(b); series_is_divergent = (a + n) * z / ((b + n) * n) < -1; } } else if (!series_is_divergent && (b < 0) && (a > 0)) { // Series almost always become divergent as b crosses the origin: series_is_divergent = true; } if (series_is_divergent && (b < -1) && (b > -5) && (a > b)) series_is_divergent = false; // don't bother with divergence, series will be OK // // Test for alternating series due to negative a, // in particular, see if the series is initially divergent // If so use the recurrence relation on a: // if (series_is_divergent) { if((a < 0) && (floor(a) == a) && (-a < policies::get_max_series_iterations())) // This works amazingly well for negative integer a: return hypergeometric_1F1_backward_recurrence_for_negative_a(a, b, z, pol, function, log_scaling); // // In what follows we have to set limits on how large z can be otherwise // the Bessel series become large and divergent and all the digits cancel out. // The criteria are distinctly empiracle rather than based on a firm analysis // of the terms in the series. // if (b > 0) { T z_limit = fabs((2 * a - b) / (sqrt(fabs(a)))); if ((z < z_limit) && hypergeometric_1F1_is_tricomi_viable_positive_b(a, b, z)) return detail::hypergeometric_1F1_AS_13_3_7_tricomi(a, b, z, pol, log_scaling); } else // b < 0 { if (a < 0) { T z_limit = fabs((2 * a - b) / (sqrt(fabs(a)))); // // I hate these hard limits, but they're about the best we can do to try and avoid // Bessel function internal failures: these will be caught and handled // but up the expense of this function call: // if (((z < z_limit) || (a > -500)) && ((b > -500) || (b - 2 * a > 0)) && (z < -a)) { // // Outside this domain we will probably get better accuracy from the recursive methods. // if(!(((a < b) && (z > -b)) || (z > z_limit))) return detail::hypergeometric_1F1_AS_13_3_7_tricomi(a, b, z, pol, log_scaling); // // When b and z are both very small, we get large errors from the recurrence methods // in the fallbacks. Tricomi seems to work well here, as does direct series evaluation // at least some of the time. Picking the right method is not easy, and sometimes this // is much worse than the fallback. Overall though, it's a reasonable choice that keeps // the very worst errors under control. // if(b > -1) return detail::hypergeometric_1F1_AS_13_3_7_tricomi(a, b, z, pol, log_scaling); } } // // We previously used Tricomi here, but it appears to be worse than // the recurrence-based algorithms in hypergeometric_1F1_divergent_fallback. /* else { T aa = a < 1 ? T(1) : a; if (z < fabs((2 * aa - b) / (sqrt(fabs(aa * b))))) return detail::hypergeometric_1F1_AS_13_3_7_tricomi(a, b, z, pol, log_scaling); }*/ } return hypergeometric_1F1_divergent_fallback(a, b, z, pol, log_scaling); } if (hypergeometric_1F1_is_13_3_6_region(b_minus_a, b, T(-z))) { // b_minus_a is tiny compared to b, and -z < 0 // 13.3.6 appears to be the most efficient and often the most accurate method. return boost::math::detail::hypergeometric_1F1_AS_13_3_6(a, b, z, b_minus_a, pol, log_scaling); } #if 0 if ((a > 0) && (b > 0) && (a * z / b > 2)) { // // Series is initially divergent and slow to converge, see if applying // Kummer's relation can improve things: // if (is_convergent_negative_z_series(b_minus_a, b, T(-z), b_minus_a)) { long long scaling = lltrunc(z); T r = exp(z - scaling) * detail::hypergeometric_1F1_checked_series_impl(b_minus_a, b, T(-z), pol, log_scaling); log_scaling += scaling; return r; } } #endif if ((a > 0) && (b > 0) && (a * z > 50)) return detail::hypergeometric_1F1_large_abz(a, b, z, pol, log_scaling); if (b < 0) return detail::hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling); return detail::hypergeometric_1F1_generic_series(a, b, z, pol, log_scaling, function); } template inline T hypergeometric_1F1_imp(const T& a, const T& b, const T& z, const Policy& pol) { BOOST_MATH_STD_USING // exp, fabs, sqrt long long log_scaling = 0; T result = hypergeometric_1F1_imp(a, b, z, pol, log_scaling); // // Actual result will be result * e^log_scaling. // #ifndef BOOST_NO_CXX11_THREAD_LOCAL static const thread_local long long max_scaling = lltrunc(boost::math::tools::log_max_value()) - 2; static const thread_local T max_scale_factor = exp(T(max_scaling)); #else long long max_scaling = lltrunc(boost::math::tools::log_max_value()) - 2; T max_scale_factor = exp(T(max_scaling)); #endif while (log_scaling > max_scaling) { result *= max_scale_factor; log_scaling -= max_scaling; } while (log_scaling < -max_scaling) { result /= max_scale_factor; log_scaling += max_scaling; } if (log_scaling) result *= exp(T(log_scaling)); return result; } template inline T log_hypergeometric_1F1_imp(const T& a, const T& b, const T& z, int* sign, const Policy& pol) { BOOST_MATH_STD_USING // exp, fabs, sqrt long long log_scaling = 0; T result = hypergeometric_1F1_imp(a, b, z, pol, log_scaling); if (sign) *sign = result < 0 ? -1 : 1; result = log(fabs(result)) + log_scaling; return result; } template inline T hypergeometric_1F1_regularized_imp(const T& a, const T& b, const T& z, const Policy& pol) { BOOST_MATH_STD_USING // exp, fabs, sqrt long long log_scaling = 0; T result = hypergeometric_1F1_imp(a, b, z, pol, log_scaling); // // Actual result will be result * e^log_scaling / tgamma(b). // int result_sign = 1; T scale = log_scaling - boost::math::lgamma(b, &result_sign, pol); #ifndef BOOST_NO_CXX11_THREAD_LOCAL static const thread_local T max_scaling = boost::math::tools::log_max_value() - 2; static const thread_local T max_scale_factor = exp(max_scaling); #else T max_scaling = boost::math::tools::log_max_value() - 2; T max_scale_factor = exp(max_scaling); #endif while (scale > max_scaling) { result *= max_scale_factor; scale -= max_scaling; } while (scale < -max_scaling) { result /= max_scale_factor; scale += max_scaling; } if (scale != 0) result *= exp(scale); return result * result_sign; } } // namespace detail template inline typename tools::promote_args::type hypergeometric_1F1(T1 a, T2 b, T3 z, const Policy& /* pol */) { BOOST_FPU_EXCEPTION_GUARD typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; return policies::checked_narrowing_cast( detail::hypergeometric_1F1_imp( static_cast(a), static_cast(b), static_cast(z), forwarding_policy()), "boost::math::hypergeometric_1F1<%1%>(%1%,%1%,%1%)"); } template inline typename tools::promote_args::type hypergeometric_1F1(T1 a, T2 b, T3 z) { return hypergeometric_1F1(a, b, z, policies::policy<>()); } template inline typename tools::promote_args::type hypergeometric_1F1_regularized(T1 a, T2 b, T3 z, const Policy& /* pol */) { BOOST_FPU_EXCEPTION_GUARD typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; return policies::checked_narrowing_cast( detail::hypergeometric_1F1_regularized_imp( static_cast(a), static_cast(b), static_cast(z), forwarding_policy()), "boost::math::hypergeometric_1F1<%1%>(%1%,%1%,%1%)"); } template inline typename tools::promote_args::type hypergeometric_1F1_regularized(T1 a, T2 b, T3 z) { return hypergeometric_1F1_regularized(a, b, z, policies::policy<>()); } template inline typename tools::promote_args::type log_hypergeometric_1F1(T1 a, T2 b, T3 z, const Policy& /* pol */) { BOOST_FPU_EXCEPTION_GUARD typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; return policies::checked_narrowing_cast( detail::log_hypergeometric_1F1_imp( static_cast(a), static_cast(b), static_cast(z), 0, forwarding_policy()), "boost::math::hypergeometric_1F1<%1%>(%1%,%1%,%1%)"); } template inline typename tools::promote_args::type log_hypergeometric_1F1(T1 a, T2 b, T3 z) { return log_hypergeometric_1F1(a, b, z, policies::policy<>()); } template inline typename tools::promote_args::type log_hypergeometric_1F1(T1 a, T2 b, T3 z, int* sign, const Policy& /* pol */) { BOOST_FPU_EXCEPTION_GUARD typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; return policies::checked_narrowing_cast( detail::log_hypergeometric_1F1_imp( static_cast(a), static_cast(b), static_cast(z), sign, forwarding_policy()), "boost::math::hypergeometric_1F1<%1%>(%1%,%1%,%1%)"); } template inline typename tools::promote_args::type log_hypergeometric_1F1(T1 a, T2 b, T3 z, int* sign) { return log_hypergeometric_1F1(a, b, z, sign, policies::policy<>()); } } } // namespace boost::math #endif // BOOST_MATH_HYPERGEOMETRIC_HPP