//======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Copyright 2004, 2005 Trustees of Indiana University // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, // Doug Gregor, D. Kevin McGrath // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #ifndef BOOST_GRAPH_CUTHILL_MCKEE_HPP #define BOOST_GRAPH_CUTHILL_MCKEE_HPP #include #include #include #include /* (Reverse) Cuthill-McKee Algorithm for matrix reordering */ namespace boost { namespace detail { template < typename OutputIterator, typename Buffer, typename DegreeMap > class bfs_rcm_visitor : public default_bfs_visitor { public: bfs_rcm_visitor(OutputIterator* iter, Buffer* b, DegreeMap deg) : permutation(iter), Qptr(b), degree(deg) { } template < class Vertex, class Graph > void examine_vertex(Vertex u, Graph&) { *(*permutation)++ = u; index_begin = Qptr->size(); } template < class Vertex, class Graph > void finish_vertex(Vertex, Graph&) { using std::sort; typedef typename property_traits< DegreeMap >::value_type ds_type; typedef indirect_cmp< DegreeMap, std::less< ds_type > > Compare; Compare comp(degree); sort(Qptr->begin() + index_begin, Qptr->end(), comp); } protected: OutputIterator* permutation; int index_begin; Buffer* Qptr; DegreeMap degree; }; } // namespace detail // Reverse Cuthill-McKee algorithm with a given starting Vertex. // // If user provides a reverse iterator, this will be a reverse-cuthill-mckee // algorithm, otherwise it will be a standard CM algorithm template < class Graph, class OutputIterator, class ColorMap, class DegreeMap > OutputIterator cuthill_mckee_ordering(const Graph& g, std::deque< typename graph_traits< Graph >::vertex_descriptor > vertex_queue, OutputIterator permutation, ColorMap color, DegreeMap degree) { // create queue, visitor...don't forget namespaces! typedef typename graph_traits< Graph >::vertex_descriptor Vertex; typedef typename boost::sparse::sparse_ordering_queue< Vertex > queue; typedef typename detail::bfs_rcm_visitor< OutputIterator, queue, DegreeMap > Visitor; typedef typename property_traits< ColorMap >::value_type ColorValue; typedef color_traits< ColorValue > Color; queue Q; // create a bfs_rcm_visitor as defined above Visitor vis(&permutation, &Q, degree); typename graph_traits< Graph >::vertex_iterator ui, ui_end; // Copy degree to pseudo_degree // initialize the color map for (boost::tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui) { put(color, *ui, Color::white()); } while (!vertex_queue.empty()) { Vertex s = vertex_queue.front(); vertex_queue.pop_front(); // call BFS with visitor breadth_first_visit(g, s, Q, vis, color); } return permutation; } // This is the case where only a single starting vertex is supplied. template < class Graph, class OutputIterator, class ColorMap, class DegreeMap > OutputIterator cuthill_mckee_ordering(const Graph& g, typename graph_traits< Graph >::vertex_descriptor s, OutputIterator permutation, ColorMap color, DegreeMap degree) { std::deque< typename graph_traits< Graph >::vertex_descriptor > vertex_queue; vertex_queue.push_front(s); return cuthill_mckee_ordering(g, vertex_queue, permutation, color, degree); } // This is the version of CM which selects its own starting vertex template < class Graph, class OutputIterator, class ColorMap, class DegreeMap > OutputIterator cuthill_mckee_ordering(const Graph& G, OutputIterator permutation, ColorMap color, DegreeMap degree) { if (boost::graph::has_no_vertices(G)) return permutation; typedef typename boost::graph_traits< Graph >::vertex_descriptor Vertex; typedef typename property_traits< ColorMap >::value_type ColorValue; typedef color_traits< ColorValue > Color; std::deque< Vertex > vertex_queue; // Mark everything white BGL_FORALL_VERTICES_T(v, G, Graph) put(color, v, Color::white()); // Find one vertex from each connected component BGL_FORALL_VERTICES_T(v, G, Graph) { if (get(color, v) == Color::white()) { depth_first_visit(G, v, dfs_visitor<>(), color); vertex_queue.push_back(v); } } // Find starting nodes for all vertices // TBD: How to do this with a directed graph? for (typename std::deque< Vertex >::iterator i = vertex_queue.begin(); i != vertex_queue.end(); ++i) *i = find_starting_node(G, *i, color, degree); return cuthill_mckee_ordering(G, vertex_queue, permutation, color, degree); } template < typename Graph, typename OutputIterator, typename VertexIndexMap > OutputIterator cuthill_mckee_ordering( const Graph& G, OutputIterator permutation, VertexIndexMap index_map) { if (boost::graph::has_no_vertices(G)) return permutation; std::vector< default_color_type > colors(num_vertices(G)); return cuthill_mckee_ordering(G, permutation, make_iterator_property_map(&colors[0], index_map, colors[0]), make_out_degree_map(G)); } template < typename Graph, typename OutputIterator > inline OutputIterator cuthill_mckee_ordering( const Graph& G, OutputIterator permutation) { return cuthill_mckee_ordering(G, permutation, get(vertex_index, G)); } } // namespace boost #endif // BOOST_GRAPH_CUTHILL_MCKEE_HPP