// // detail/reactive_socket_service.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP #define BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #if !defined(BOOST_ASIO_HAS_IOCP) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace asio { namespace detail { template class reactive_socket_service : public execution_context_service_base >, public reactive_socket_service_base { public: // The protocol type. typedef Protocol protocol_type; // The endpoint type. typedef typename Protocol::endpoint endpoint_type; // The native type of a socket. typedef socket_type native_handle_type; // The implementation type of the socket. struct implementation_type : reactive_socket_service_base::base_implementation_type { // Default constructor. implementation_type() : protocol_(endpoint_type().protocol()) { } // The protocol associated with the socket. protocol_type protocol_; }; // Constructor. reactive_socket_service(execution_context& context) : execution_context_service_base< reactive_socket_service >(context), reactive_socket_service_base(context) { } // Destroy all user-defined handler objects owned by the service. void shutdown() { this->base_shutdown(); } // Move-construct a new socket implementation. void move_construct(implementation_type& impl, implementation_type& other_impl) BOOST_ASIO_NOEXCEPT { this->base_move_construct(impl, other_impl); impl.protocol_ = other_impl.protocol_; other_impl.protocol_ = endpoint_type().protocol(); } // Move-assign from another socket implementation. void move_assign(implementation_type& impl, reactive_socket_service_base& other_service, implementation_type& other_impl) { this->base_move_assign(impl, other_service, other_impl); impl.protocol_ = other_impl.protocol_; other_impl.protocol_ = endpoint_type().protocol(); } // Move-construct a new socket implementation from another protocol type. template void converting_move_construct(implementation_type& impl, reactive_socket_service&, typename reactive_socket_service< Protocol1>::implementation_type& other_impl) { this->base_move_construct(impl, other_impl); impl.protocol_ = protocol_type(other_impl.protocol_); other_impl.protocol_ = typename Protocol1::endpoint().protocol(); } // Open a new socket implementation. boost::system::error_code open(implementation_type& impl, const protocol_type& protocol, boost::system::error_code& ec) { if (!do_open(impl, protocol.family(), protocol.type(), protocol.protocol(), ec)) impl.protocol_ = protocol; return ec; } // Assign a native socket to a socket implementation. boost::system::error_code assign(implementation_type& impl, const protocol_type& protocol, const native_handle_type& native_socket, boost::system::error_code& ec) { if (!do_assign(impl, protocol.type(), native_socket, ec)) impl.protocol_ = protocol; return ec; } // Get the native socket representation. native_handle_type native_handle(implementation_type& impl) { return impl.socket_; } // Bind the socket to the specified local endpoint. boost::system::error_code bind(implementation_type& impl, const endpoint_type& endpoint, boost::system::error_code& ec) { socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size(), ec); return ec; } // Set a socket option. template boost::system::error_code set_option(implementation_type& impl, const Option& option, boost::system::error_code& ec) { socket_ops::setsockopt(impl.socket_, impl.state_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), option.size(impl.protocol_), ec); return ec; } // Set a socket option. template boost::system::error_code get_option(const implementation_type& impl, Option& option, boost::system::error_code& ec) const { std::size_t size = option.size(impl.protocol_); socket_ops::getsockopt(impl.socket_, impl.state_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), &size, ec); if (!ec) option.resize(impl.protocol_, size); return ec; } // Get the local endpoint. endpoint_type local_endpoint(const implementation_type& impl, boost::system::error_code& ec) const { endpoint_type endpoint; std::size_t addr_len = endpoint.capacity(); if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len, ec)) return endpoint_type(); endpoint.resize(addr_len); return endpoint; } // Get the remote endpoint. endpoint_type remote_endpoint(const implementation_type& impl, boost::system::error_code& ec) const { endpoint_type endpoint; std::size_t addr_len = endpoint.capacity(); if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len, false, ec)) return endpoint_type(); endpoint.resize(addr_len); return endpoint; } // Disable sends or receives on the socket. boost::system::error_code shutdown(base_implementation_type& impl, socket_base::shutdown_type what, boost::system::error_code& ec) { socket_ops::shutdown(impl.socket_, what, ec); return ec; } // Send a datagram to the specified endpoint. Returns the number of bytes // sent. template size_t send_to(implementation_type& impl, const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, boost::system::error_code& ec) { typedef buffer_sequence_adapter bufs_type; if (bufs_type::is_single_buffer) { return socket_ops::sync_sendto1(impl.socket_, impl.state_, bufs_type::first(buffers).data(), bufs_type::first(buffers).size(), flags, destination.data(), destination.size(), ec); } else { bufs_type bufs(buffers); return socket_ops::sync_sendto(impl.socket_, impl.state_, bufs.buffers(), bufs.count(), flags, destination.data(), destination.size(), ec); } } // Wait until data can be sent without blocking. size_t send_to(implementation_type& impl, const null_buffers&, const endpoint_type&, socket_base::message_flags, boost::system::error_code& ec) { // Wait for socket to become ready. socket_ops::poll_write(impl.socket_, impl.state_, -1, ec); return 0; } // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send_to(implementation_type& impl, const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = boost_asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_sendto_op op; typename op::ptr p = { boost::asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, impl.socket_, buffers, destination, flags, handler, io_ex); BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_send_to")); start_op(impl, reactor::write_op, p.p, is_continuation, true, false); p.v = p.p = 0; } // Start an asynchronous wait until data can be sent without blocking. template void async_send_to(implementation_type& impl, const null_buffers&, const endpoint_type&, socket_base::message_flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = boost_asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_null_buffers_op op; typename op::ptr p = { boost::asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, handler, io_ex); BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_send_to(null_buffers)")); start_op(impl, reactor::write_op, p.p, is_continuation, false, false); p.v = p.p = 0; } // Receive a datagram with the endpoint of the sender. Returns the number of // bytes received. template size_t receive_from(implementation_type& impl, const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, boost::system::error_code& ec) { typedef buffer_sequence_adapter bufs_type; std::size_t addr_len = sender_endpoint.capacity(); std::size_t bytes_recvd; if (bufs_type::is_single_buffer) { bytes_recvd = socket_ops::sync_recvfrom1(impl.socket_, impl.state_, bufs_type::first(buffers).data(), bufs_type::first(buffers).size(), flags, sender_endpoint.data(), &addr_len, ec); } else { bufs_type bufs(buffers); bytes_recvd = socket_ops::sync_recvfrom( impl.socket_, impl.state_, bufs.buffers(), bufs.count(), flags, sender_endpoint.data(), &addr_len, ec); } if (!ec) sender_endpoint.resize(addr_len); return bytes_recvd; } // Wait until data can be received without blocking. size_t receive_from(implementation_type& impl, const null_buffers&, endpoint_type& sender_endpoint, socket_base::message_flags, boost::system::error_code& ec) { // Wait for socket to become ready. socket_ops::poll_read(impl.socket_, impl.state_, -1, ec); // Reset endpoint since it can be given no sensible value at this time. sender_endpoint = endpoint_type(); return 0; } // Start an asynchronous receive. The buffer for the data being received and // the sender_endpoint object must both be valid for the lifetime of the // asynchronous operation. template void async_receive_from(implementation_type& impl, const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = boost_asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_recvfrom_op op; typename op::ptr p = { boost::asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; int protocol = impl.protocol_.type(); p.p = new (p.v) op(success_ec_, impl.socket_, protocol, buffers, sender_endpoint, flags, handler, io_ex); BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_receive_from")); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, p.p, is_continuation, true, false); p.v = p.p = 0; } // Wait until data can be received without blocking. template void async_receive_from(implementation_type& impl, const null_buffers&, endpoint_type& sender_endpoint, socket_base::message_flags flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = boost_asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_null_buffers_op op; typename op::ptr p = { boost::asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, handler, io_ex); BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_receive_from(null_buffers)")); // Reset endpoint since it can be given no sensible value at this time. sender_endpoint = endpoint_type(); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, p.p, is_continuation, false, false); p.v = p.p = 0; } // Accept a new connection. template boost::system::error_code accept(implementation_type& impl, Socket& peer, endpoint_type* peer_endpoint, boost::system::error_code& ec) { // We cannot accept a socket that is already open. if (peer.is_open()) { ec = boost::asio::error::already_open; return ec; } std::size_t addr_len = peer_endpoint ? peer_endpoint->capacity() : 0; socket_holder new_socket(socket_ops::sync_accept(impl.socket_, impl.state_, peer_endpoint ? peer_endpoint->data() : 0, peer_endpoint ? &addr_len : 0, ec)); // On success, assign new connection to peer socket object. if (new_socket.get() != invalid_socket) { if (peer_endpoint) peer_endpoint->resize(addr_len); peer.assign(impl.protocol_, new_socket.get(), ec); if (!ec) new_socket.release(); } return ec; } // Start an asynchronous accept. The peer and peer_endpoint objects must be // valid until the accept's handler is invoked. template void async_accept(implementation_type& impl, Socket& peer, endpoint_type* peer_endpoint, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = boost_asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_accept_op op; typename op::ptr p = { boost::asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, impl.socket_, impl.state_, peer, impl.protocol_, peer_endpoint, handler, io_ex); BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_accept")); start_accept_op(impl, p.p, is_continuation, peer.is_open()); p.v = p.p = 0; } #if defined(BOOST_ASIO_HAS_MOVE) // Start an asynchronous accept. The peer_endpoint object must be valid until // the accept's handler is invoked. template void async_move_accept(implementation_type& impl, const PeerIoExecutor& peer_io_ex, endpoint_type* peer_endpoint, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = boost_asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_move_accept_op op; typename op::ptr p = { boost::asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, peer_io_ex, impl.socket_, impl.state_, impl.protocol_, peer_endpoint, handler, io_ex); BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_accept")); start_accept_op(impl, p.p, is_continuation, false); p.v = p.p = 0; } #endif // defined(BOOST_ASIO_HAS_MOVE) // Connect the socket to the specified endpoint. boost::system::error_code connect(implementation_type& impl, const endpoint_type& peer_endpoint, boost::system::error_code& ec) { socket_ops::sync_connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size(), ec); return ec; } // Start an asynchronous connect. template void async_connect(implementation_type& impl, const endpoint_type& peer_endpoint, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = boost_asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_connect_op op; typename op::ptr p = { boost::asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, impl.socket_, handler, io_ex); BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_connect")); start_connect_op(impl, p.p, is_continuation, peer_endpoint.data(), peer_endpoint.size()); p.v = p.p = 0; } }; } // namespace detail } // namespace asio } // namespace boost #include #endif // !defined(BOOST_ASIO_HAS_IOCP) #endif // BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP